Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from datasets.utils.logging import disable_progress_bar | |
| from constants import column_names, RANKING_COLUMN, ORDERED_COLUMN_NAMES | |
| from utils_display import make_clickable_model | |
| disable_progress_bar() | |
| import json | |
| import os | |
| summary_file = "hardcorelogic.summary.json" | |
| #result_dir = "HardcoreLogic-Eval/results_dirs" | |
| results_by_model = {} | |
| # Formats the columns | |
| def formatter(x): | |
| if type(x) is str: | |
| x = x | |
| else: | |
| x = round(x, 2) | |
| return x | |
| def post_processing(df, column_names, rank_column=RANKING_COLUMN, ordered_columns=ORDERED_COLUMN_NAMES, click_url=True): | |
| df = df[[col for col in column_names.keys() if col in df.columns]].copy() | |
| for col in df.columns: | |
| if col == "model" and click_url: | |
| df[col] = df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) | |
| else: | |
| df[col] = df[col].apply(formatter) # For numerical values | |
| list_columns = [col for col in ordered_columns if col in df.columns] | |
| df = df[list_columns] | |
| if rank_column in df.columns: | |
| df.sort_values(by=rank_column, inplace=True, ascending=False) | |
| df.rename(columns=column_names, inplace=True) | |
| return df | |
