Spaces:
Configuration error
Configuration error
File size: 16,596 Bytes
f9b1ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""
Enhanced Clustering Trainer with Sentence Transformers
Clusters datasets into GOOD, LIMITATIONS, and HARMFUL categories
"""
import asyncio
import json
import logging
from pathlib import Path
from typing import Dict, List, Any, Tuple
from dataclasses import dataclass, asdict
from datetime import datetime
import pickle
import numpy as np
from sklearn.cluster import KMeans, DBSCAN
from sklearn.metrics import silhouette_score, davies_bouldin_score
from sklearn.preprocessing import StandardScaler
from collections import Counter
import re
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Try to import sentence transformers
try:
from sentence_transformers import SentenceTransformer
HAS_TRANSFORMERS = True
except ImportError:
logger.warning("sentence-transformers not installed. Install with: uv pip install sentence-transformers")
HAS_TRANSFORMERS = False
@dataclass
class ClusterResult:
"""Result of clustering analysis"""
cluster_id: int
size: int
# Cluster composition
category_distribution: Dict[str, float] # {good: 0.2, limitations: 0.8}
domain_distribution: Dict[str, int] # {mathematics: 50, medicine: 30}
# Quality metrics
purity: float # Homogeneity of cluster (0-1)
is_dangerous: bool # True if >70% limitations or harmful
# Representative examples
examples: List[str]
# Pattern description
pattern_description: str
detection_heuristic: str # Rule for detecting this pattern
# Top keywords
keywords: List[str]
@dataclass
class TrainingResult:
"""Complete training results"""
timestamp: str
model_type: str # "kmeans", "dbscan"
embedding_model: str # "all-MiniLM-L6-v2"
# Metrics
n_clusters: int
silhouette_score: float
davies_bouldin_score: float
# Clusters
clusters: List[ClusterResult]
dangerous_clusters: List[ClusterResult] # For ToGMAL tools
# Paths
model_path: str
embeddings_path: str
class EnhancedClusteringTrainer:
"""
Clustering trainer using sentence transformers
Goal: Separate GOOD, LIMITATIONS, and HARMFUL clusters clearly
"""
def __init__(
self,
embedding_model: str = "all-MiniLM-L6-v2",
output_dir: Path = Path("./models/clustering")
):
self.embedding_model_name = embedding_model
self.output_dir = output_dir
self.output_dir.mkdir(parents=True, exist_ok=True)
if HAS_TRANSFORMERS:
logger.info(f"Loading sentence transformer: {embedding_model}")
self.embedder = SentenceTransformer(embedding_model)
else:
logger.error("sentence-transformers not available!")
self.embedder = None
self.dangerous_threshold = 0.7 # >70% limitations/harmful = dangerous
async def train_clustering(
self,
dataset_entries: List[Dict[str, Any]],
n_clusters: int = 3,
method: str = "kmeans"
) -> TrainingResult:
"""
Train clustering model
Args:
dataset_entries: List of {text, cluster_category, domain, source}
n_clusters: Number of clusters (3 = good, limitations, harmful)
method: "kmeans" or "dbscan"
Returns:
TrainingResult with clusters and metrics
"""
if not self.embedder:
raise RuntimeError("Sentence transformers not available")
logger.info(f"\n{'='*60}")
logger.info(f"Training {method.upper()} Clustering")
logger.info(f"{'='*60}")
# Extract texts and labels
texts = [entry['text'] for entry in dataset_entries]
true_categories = [entry['cluster_category'] for entry in dataset_entries]
domains = [entry['domain'] for entry in dataset_entries]
logger.info(f"Total samples: {len(texts)}")
logger.info(f"Categories: {Counter(true_categories)}")
logger.info(f"Domains: {Counter(domains)}")
# Generate embeddings
logger.info("\n[1/4] Generating embeddings with sentence transformers...")
embeddings = await self._generate_embeddings(texts)
# Standardize
logger.info("[2/4] Standardizing embeddings...")
scaler = StandardScaler()
embeddings_scaled = scaler.fit_transform(embeddings)
# Perform clustering
logger.info(f"[3/4] Clustering with {method}...")
if method == "kmeans":
model, labels = self._cluster_kmeans(embeddings_scaled, n_clusters)
else: # dbscan
model, labels = self._cluster_dbscan(embeddings_scaled)
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
# Calculate metrics
logger.info("[4/4] Analyzing clusters...")
silhouette = silhouette_score(embeddings_scaled, labels) if len(set(labels)) > 1 else 0.0
davies_bouldin = davies_bouldin_score(embeddings_scaled, labels) if len(set(labels)) > 1 else 999.0
logger.info(f"\nMetrics:")
logger.info(f" Clusters: {n_clusters}")
logger.info(f" Silhouette Score: {silhouette:.4f}")
logger.info(f" Davies-Bouldin Score: {davies_bouldin:.4f}")
# Analyze clusters
clusters = self._analyze_clusters(
labels, texts, true_categories, domains, dataset_entries
)
# Identify dangerous clusters
dangerous_clusters = [c for c in clusters if c.is_dangerous]
logger.info(f"\nDangerous clusters: {len(dangerous_clusters)}/{n_clusters}")
# Save model
model_path = self.output_dir / f"{method}_model.pkl"
self._save_model(model, scaler, model_path, clusters)
# Save embeddings
embeddings_path = self.output_dir / "embeddings.npy"
np.save(embeddings_path, embeddings)
return TrainingResult(
timestamp=datetime.now().isoformat(),
model_type=method,
embedding_model=self.embedding_model_name,
n_clusters=n_clusters,
silhouette_score=silhouette,
davies_bouldin_score=davies_bouldin,
clusters=clusters,
dangerous_clusters=dangerous_clusters,
model_path=str(model_path),
embeddings_path=str(embeddings_path)
)
async def _generate_embeddings(self, texts: List[str]) -> np.ndarray:
"""Generate embeddings using sentence transformers"""
embeddings = self.embedder.encode(
texts,
batch_size=32,
show_progress_bar=True,
convert_to_numpy=True,
normalize_embeddings=True # Important for cosine similarity
)
logger.info(f"Generated embeddings: {embeddings.shape}")
return embeddings
def _cluster_kmeans(
self, embeddings: np.ndarray, n_clusters: int
) -> Tuple[KMeans, np.ndarray]:
"""Perform K-Means clustering"""
model = KMeans(
n_clusters=n_clusters,
random_state=42,
n_init=20, # More initializations for better results
max_iter=500
)
labels = model.fit_predict(embeddings)
return model, labels
def _cluster_dbscan(
self, embeddings: np.ndarray, eps: float = 0.5, min_samples: int = 10
) -> Tuple[DBSCAN, np.ndarray]:
"""Perform DBSCAN clustering"""
model = DBSCAN(
eps=eps,
min_samples=min_samples,
metric='cosine',
n_jobs=-1
)
labels = model.fit_predict(embeddings)
n_noise = np.sum(labels == -1)
logger.info(f" DBSCAN noise points: {n_noise}")
return model, labels
def _analyze_clusters(
self,
labels: np.ndarray,
texts: List[str],
true_categories: List[str],
domains: List[str],
entries: List[Dict[str, Any]]
) -> List[ClusterResult]:
"""Analyze cluster composition and identify patterns"""
clusters = []
for cluster_id in set(labels):
if cluster_id == -1: # Skip noise in DBSCAN
continue
# Get cluster members
mask = labels == cluster_id
cluster_texts = [t for t, m in zip(texts, mask) if m]
cluster_categories = [c for c, m in zip(true_categories, mask) if m]
cluster_domains = [d for d, m in zip(domains, mask) if m]
# Category distribution
category_counts = Counter(cluster_categories)
total = len(cluster_categories)
category_dist = {cat: count/total for cat, count in category_counts.items()}
# Domain distribution
domain_dist = dict(Counter(cluster_domains))
# Calculate purity (max category %)
purity = max(category_dist.values()) if category_dist else 0.0
# Is this dangerous? (>70% limitations or harmful)
limitations_harmful_pct = (
category_dist.get('limitations', 0.0) +
category_dist.get('harmful', 0.0)
)
is_dangerous = limitations_harmful_pct > self.dangerous_threshold
# Extract keywords
keywords = self._extract_keywords(cluster_texts)
# Generate pattern description
primary_category = max(category_dist, key=category_dist.get)
primary_domain = max(domain_dist, key=domain_dist.get)
pattern_desc = f"{primary_category.upper()} cluster: {primary_domain}"
if is_dangerous:
pattern_desc += f" (DANGEROUS: {limitations_harmful_pct:.1%} limitations/harmful)"
# Generate detection heuristic
heuristic = self._generate_heuristic(
primary_category, primary_domain, keywords
)
# Representative examples
examples = cluster_texts[:5]
cluster_result = ClusterResult(
cluster_id=int(cluster_id),
size=len(cluster_texts),
category_distribution=category_dist,
domain_distribution=domain_dist,
purity=float(purity),
is_dangerous=is_dangerous,
examples=examples,
pattern_description=pattern_desc,
detection_heuristic=heuristic,
keywords=keywords
)
clusters.append(cluster_result)
# Log cluster info
logger.info(f"\nCluster {cluster_id}:")
logger.info(f" Size: {len(cluster_texts)}")
logger.info(f" Purity: {purity:.1%}")
logger.info(f" Categories: {category_dist}")
logger.info(f" Dangerous: {is_dangerous}")
logger.info(f" Pattern: {pattern_desc}")
return clusters
def _extract_keywords(self, texts: List[str], top_n: int = 10) -> List[str]:
"""Extract common keywords from cluster texts"""
all_text = " ".join(texts).lower()
words = re.findall(r'\b[a-z]{4,}\b', all_text)
# Remove common words
stopwords = {'this', 'that', 'with', 'from', 'have', 'what', 'which', 'would', 'could', 'should'}
words = [w for w in words if w not in stopwords]
word_counts = Counter(words)
return [word for word, count in word_counts.most_common(top_n)]
def _generate_heuristic(
self, category: str, domain: str, keywords: List[str]
) -> str:
"""Generate detection heuristic for this cluster"""
if category == "limitations":
if domain == "mathematics":
return "keyword_match: [integral, proof, theorem, equation] OR complexity_score > 0.7"
elif domain == "medicine":
return f"keyword_match: {keywords[:5]} AND domain=medicine"
elif domain == "coding":
return "contains_code AND (has_vulnerability OR cyclomatic_complexity > 10)"
else:
return f"keyword_match: {keywords[:5]}"
elif category == "harmful":
return f"safety_filter_trigger OR keyword_match: {keywords[:5]}"
else: # good
return f"domain={domain} AND low_complexity"
def _save_model(
self, model: Any, scaler: StandardScaler, path: Path, clusters: List[ClusterResult]
):
"""Save model with metadata"""
model_data = {
'model': model,
'scaler': scaler,
'clusters': [asdict(c) for c in clusters],
'dangerous_clusters': [c.cluster_id for c in clusters if c.is_dangerous],
'timestamp': datetime.now().isoformat(),
'embedding_model': self.embedding_model_name
}
with open(path, 'wb') as f:
pickle.dump(model_data, f)
logger.info(f"\n✓ Model saved to {path}")
async def main():
"""Main training pipeline"""
# Load dataset
dataset_path = Path("./data/datasets/combined_dataset.json")
if not dataset_path.exists():
logger.error(f"Dataset not found: {dataset_path}")
logger.info("Run enhanced_dataset_fetcher.py first!")
return
logger.info(f"Loading dataset from {dataset_path}")
with open(dataset_path, 'r') as f:
data = json.load(f)
# Flatten all entries
all_entries = []
for category, entries in data['categories'].items():
all_entries.extend(entries)
logger.info(f"Loaded {len(all_entries)} entries")
logger.info(f"Summary: {data['summary']}")
# Train clustering
trainer = EnhancedClusteringTrainer()
# Try K-Means with 3 clusters (good, limitations, harmful)
result = await trainer.train_clustering(all_entries, n_clusters=3, method="kmeans")
# Save results
results_path = Path("./data/training_results.json")
with open(results_path, 'w') as f:
json.dump({
**asdict(result),
'clusters': [asdict(c) for c in result.clusters],
'dangerous_clusters': [asdict(c) for c in result.dangerous_clusters]
}, f, indent=2)
logger.info(f"\n✓ Results saved to {results_path}")
# Export to ToGMAL ML tools cache
await export_to_ml_tools_cache(result)
async def export_to_ml_tools_cache(result: TrainingResult):
"""Export dangerous clusters to ToGMAL ML tools cache"""
patterns = []
for cluster in result.dangerous_clusters:
# Extract primary domain
primary_domain = max(cluster.domain_distribution, key=cluster.domain_distribution.get)
pattern = {
"id": f"cluster_{cluster.cluster_id}",
"domain": primary_domain,
"description": cluster.pattern_description,
"confidence": float(cluster.purity),
"heuristic": cluster.detection_heuristic,
"examples": cluster.examples[:3],
"keywords": cluster.keywords,
"metadata": {
"cluster_size": cluster.size,
"category_distribution": cluster.category_distribution,
"discovered_at": result.timestamp
}
}
patterns.append(pattern)
# Save to ML tools cache
ml_tools_cache = {
"updated_at": result.timestamp,
"patterns": patterns,
"metadata": {
"embedding_model": result.embedding_model,
"silhouette_score": result.silhouette_score,
"n_clusters": result.n_clusters,
"total_patterns": len(patterns)
}
}
cache_path = Path("./data/ml_discovered_tools.json")
cache_path.parent.mkdir(parents=True, exist_ok=True)
with open(cache_path, 'w') as f:
json.dump(ml_tools_cache, f, indent=2)
logger.info(f"\n✓ Exported {len(patterns)} patterns to {cache_path}")
logger.info("\nDangerous patterns discovered:")
for pattern in patterns:
logger.info(f" - {pattern['domain']}: {pattern['description']}")
if __name__ == "__main__":
asyncio.run(main())
|