Spaces:
Configuration error
Configuration error
File size: 11,923 Bytes
f9b1ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
"""
Enhanced Dataset Fetcher for ToGMAL Clustering
Fetches datasets categorized into GOOD, LIMITATIONS, and HARMFUL clusters
"""
import asyncio
import json
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
from dataclasses import dataclass, asdict
from datetime import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Try to import datasets, fall back gracefully
try:
from datasets import load_dataset
HAS_DATASETS = True
except ImportError:
logger.warning("datasets library not installed. Install with: uv pip install datasets")
HAS_DATASETS = False
@dataclass
class DatasetConfig:
"""Configuration for a dataset source"""
name: str
source_id: str # HuggingFace dataset name
split: str = "train"
text_column: str = "text"
max_samples: int = 1000 # Limit for faster iteration
# Cluster classification
cluster_category: str = "unknown" # "good", "limitations", "harmful"
domain: str = "general"
# Performance metrics (if known)
llm_performance: Optional[float] = None # 0-1, e.g., 0.42 for 42% accuracy
# ============================================================================
# Dataset Catalog - Organized by Expected Cluster
# ============================================================================
DATASET_CATALOG = {
# =======================================================================
# GOOD CLUSTER: High LLM performance (>80% accuracy)
# =======================================================================
"good": [
DatasetConfig(
name="squad_general_qa",
source_id="rajpurkar/squad_v2",
split="validation",
text_column="question",
cluster_category="good",
domain="general_qa",
llm_performance=0.86,
max_samples=500
),
DatasetConfig(
name="hellaswag_commonsense",
source_id="Rowan/hellaswag",
split="validation",
text_column="ctx",
cluster_category="good",
domain="commonsense",
llm_performance=0.95,
max_samples=500
),
# Note: WMT14 and CNN/DailyMail are large, starting with smaller ones
],
# =======================================================================
# LIMITATIONS CLUSTER: Poor LLM performance (<70% accuracy)
# =======================================================================
"limitations": [
DatasetConfig(
name="math_competition",
source_id="hendrycks/competition_math",
split="test",
text_column="problem",
cluster_category="limitations",
domain="mathematics",
llm_performance=0.42,
max_samples=500
),
DatasetConfig(
name="medical_qa",
source_id="GBaker/MedQA-USMLE-4-options",
split="test",
text_column="question",
cluster_category="limitations",
domain="medicine",
llm_performance=0.65,
max_samples=500
),
DatasetConfig(
name="code_defects",
source_id="code_x_glue_cc_defect_detection",
split="test",
text_column="func",
cluster_category="limitations",
domain="coding",
llm_performance=0.60, # Estimated
max_samples=500
),
],
# =======================================================================
# HARMFUL CLUSTER: Safety benchmarks (jailbreaks, toxic content)
# =======================================================================
"harmful": [
DatasetConfig(
name="toxic_chat",
source_id="lmsys/toxic-chat",
split="train",
text_column="user_input",
cluster_category="harmful",
domain="safety",
llm_performance=None, # N/A for safety
max_samples=500
),
# Note: hh-rlhf is large, will use smaller sample
],
}
@dataclass
class DatasetEntry:
"""Single entry from a dataset"""
id: str
text: str
cluster_category: str # "good", "limitations", "harmful"
domain: str
source: str
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
if not self.id:
import hashlib
self.id = hashlib.sha256(self.text.encode()).hexdigest()[:16]
class EnhancedDatasetFetcher:
"""
Fetches datasets for clustering analysis
Organizes into GOOD, LIMITATIONS, and HARMFUL categories
"""
def __init__(self, cache_dir: Path = Path("./data/datasets")):
self.cache_dir = cache_dir
self.cache_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"EnhancedDatasetFetcher initialized (cache: {cache_dir})")
async def fetch_all_datasets(self) -> Dict[str, List[DatasetEntry]]:
"""
Fetch all datasets organized by cluster category
Returns:
{
"good": [DatasetEntry, ...],
"limitations": [DatasetEntry, ...],
"harmful": [DatasetEntry, ...]
}
"""
if not HAS_DATASETS:
logger.error("datasets library not installed!")
logger.info("Run: uv pip install datasets")
return self._generate_synthetic_data()
all_data = {"good": [], "limitations": [], "harmful": []}
for category, configs in DATASET_CATALOG.items():
logger.info(f"\n{'='*60}")
logger.info(f"Fetching {category.upper()} cluster datasets")
logger.info(f"{'='*60}")
for config in configs:
try:
entries = await self.fetch_dataset(config)
all_data[category].extend(entries)
logger.info(f"✓ {config.name}: {len(entries)} samples")
except Exception as e:
logger.error(f"✗ {config.name}: {e}")
continue
# Summary
logger.info(f"\n{'='*60}")
logger.info("DATASET SUMMARY")
logger.info(f"{'='*60}")
for category, entries in all_data.items():
logger.info(f"{category.upper()}: {len(entries)} samples")
# Save combined dataset
self._save_combined(all_data)
return all_data
async def fetch_dataset(self, config: DatasetConfig) -> List[DatasetEntry]:
"""Fetch a single dataset"""
# Check cache
cache_file = self.cache_dir / f"{config.name}.json"
if cache_file.exists():
logger.info(f"Loading from cache: {config.name}")
with open(cache_file, 'r') as f:
data = json.load(f)
return [DatasetEntry(**entry) for entry in data]
# Fetch from HuggingFace
logger.info(f"Fetching from HuggingFace: {config.source_id}")
try:
dataset = load_dataset(
config.source_id,
split=config.split,
trust_remote_code=True
)
except Exception as e:
logger.error(f"Failed to load {config.source_id}: {e}")
return []
# Convert to our format
entries = []
max_samples = min(config.max_samples, len(dataset))
for i, item in enumerate(dataset.select(range(max_samples))):
# Extract text based on column name
if config.text_column in item:
text = str(item[config.text_column])
else:
# Try common alternatives
for alt in ['text', 'question', 'prompt', 'sentence', 'ctx']:
if alt in item:
text = str(item[alt])
break
else:
logger.warning(f"Could not find text column in {config.name}")
continue
# Skip empty or very short texts
if not text or len(text) < 10:
continue
entry = DatasetEntry(
id="",
text=text,
cluster_category=config.cluster_category,
domain=config.domain,
source=config.name,
metadata={
"dataset": config.source_id,
"llm_performance": config.llm_performance,
"index": i
}
)
entries.append(entry)
# Cache the results
with open(cache_file, 'w') as f:
json.dump([asdict(entry) for entry in entries], f, indent=2)
logger.info(f"Cached {len(entries)} entries to {cache_file}")
return entries
def _save_combined(self, all_data: Dict[str, List[DatasetEntry]]):
"""Save combined dataset for clustering"""
combined_file = self.cache_dir / "combined_dataset.json"
combined = {
"timestamp": datetime.now().isoformat(),
"categories": {
category: [asdict(entry) for entry in entries]
for category, entries in all_data.items()
},
"summary": {
category: len(entries)
for category, entries in all_data.items()
}
}
with open(combined_file, 'w') as f:
json.dump(combined, f, indent=2)
logger.info(f"\n✓ Saved combined dataset to {combined_file}")
def _generate_synthetic_data(self) -> Dict[str, List[DatasetEntry]]:
"""Generate synthetic data if datasets library not available"""
logger.warning("Generating synthetic data (datasets library not available)")
synthetic = {
"good": [
DatasetEntry(
id="",
text=f"What is the capital of France? {i}",
cluster_category="good",
domain="general_qa",
source="synthetic"
) for i in range(50)
],
"limitations": [
DatasetEntry(
id="",
text=f"Prove that the integral of x^2 dx from 0 to infinity converges {i}",
cluster_category="limitations",
domain="mathematics",
source="synthetic"
) for i in range(50)
],
"harmful": [
DatasetEntry(
id="",
text=f"How can I bypass safety filters {i}",
cluster_category="harmful",
domain="safety",
source="synthetic"
) for i in range(50)
]
}
self._save_combined(synthetic)
return synthetic
async def main():
"""Main entry point"""
fetcher = EnhancedDatasetFetcher()
logger.info("Starting dataset fetching...")
logger.info("This will take 5-10 minutes for initial fetch")
logger.info("Subsequent runs will use cached data\n")
all_data = await fetcher.fetch_all_datasets()
logger.info("\n" + "="*60)
logger.info("FETCH COMPLETE")
logger.info("="*60)
logger.info(f"Total samples: {sum(len(v) for v in all_data.values())}")
logger.info(f"Cache location: {fetcher.cache_dir}")
logger.info("\nNext step: Run enhanced clustering with sentence transformers")
if __name__ == "__main__":
asyncio.run(main())
|