Spaces:
Configuration error
Configuration error
File size: 15,315 Bytes
f9b1ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
#!/usr/bin/env python3
"""
Fetch Real Benchmark Data with Dynamic Top Model Selection
===========================================================
Strategy:
1. Query OpenLLM Leaderboard to find top 5 models per benchmark
2. Fetch per-question results for those models
3. Aggregate success rates across top models
4. Generate stratified sample by difficulty
This ensures we're always using the BEST performing models for each benchmark.
"""
import json
import logging
from pathlib import Path
from typing import Dict, List, Any, Tuple
from collections import defaultdict
from dataclasses import dataclass, asdict
import time
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
try:
from datasets import load_dataset
from huggingface_hub import list_datasets, DatasetInfo
DATASETS_AVAILABLE = True
except ImportError:
logger.error("datasets not installed. Run: uv pip install datasets huggingface_hub")
DATASETS_AVAILABLE = False
@dataclass
class ModelBenchmarkScore:
"""Model performance on a specific benchmark"""
model_name: str
benchmark_name: str
score: float
config_name: str
class TopModelFinder:
"""
Find top-performing models for each benchmark on OpenLLM Leaderboard.
Uses the leaderboard's results to dynamically select best models.
"""
def __init__(self):
self.benchmark_configs = {
"MMLU": "harness_hendrycksTest_5",
"ARC": "harness_arc_challenge_25",
"GSM8K": "harness_gsm8k_5",
"HellaSwag": "harness_hellaswag_10",
"TruthfulQA": "harness_truthfulqa_mc_0",
"Winogrande": "harness_winogrande_5"
}
self.model_scores: Dict[str, List[ModelBenchmarkScore]] = defaultdict(list)
def find_leaderboard_models(self, limit: int = 50) -> List[str]:
"""
Find models with detailed results on OpenLLM Leaderboard.
Args:
limit: Maximum number of models to check
Returns:
List of model names (in format: owner__model-name)
"""
logger.info(f"Searching for models on OpenLLM Leaderboard (limit: {limit})...")
try:
# Search for datasets matching the leaderboard pattern
datasets = list_datasets(
filter="open-llm-leaderboard",
limit=limit
)
models = []
for dataset in datasets:
# Extract model name from dataset ID
# Format: open-llm-leaderboard/details_owner__model-name
if dataset.id.startswith("open-llm-leaderboard/details_"):
model_name = dataset.id.replace("open-llm-leaderboard/details_", "")
models.append(model_name)
logger.info(f"Found {len(models)} models with detailed results")
return models[:limit]
except Exception as e:
logger.error(f"Failed to find leaderboard models: {e}")
# Fallback to known top models
logger.info("Using fallback list of known top models")
return self._get_fallback_models()
def _get_fallback_models(self) -> List[str]:
"""Fallback list of known top models"""
return [
"meta-llama__Meta-Llama-3.1-70B-Instruct",
"meta-llama__Meta-Llama-3.1-8B-Instruct",
"Qwen__Qwen2.5-72B-Instruct",
"Qwen__Qwen2.5-7B-Instruct",
"mistralai__Mixtral-8x22B-Instruct-v0.1",
"mistralai__Mistral-7B-Instruct-v0.3",
"google__gemma-2-27b-it",
"google__gemma-2-9b-it",
"microsoft__Phi-3-medium-128k-instruct",
"microsoft__Phi-3-mini-128k-instruct"
]
def get_model_benchmark_score(
self,
model_name: str,
benchmark_name: str,
config_name: str
) -> float:
"""
Get a model's score on a specific benchmark.
Args:
model_name: Model name (format: owner__model-name)
benchmark_name: Benchmark name (e.g., "MMLU")
config_name: Config name (e.g., "harness_hendrycksTest_5")
Returns:
Score (0.0 to 1.0), or -1.0 if not available
"""
try:
dataset_name = f"open-llm-leaderboard/details_{model_name}"
# Load the results config
results = load_dataset(dataset_name, "results", split="latest")
# Results typically has one row with all scores
if len(results) > 0:
row = results[0]
# Look for the benchmark score in the row
# Different benchmarks may have different field names
possible_keys = [
benchmark_name.lower(),
config_name,
f"{benchmark_name}_acc",
f"{benchmark_name}_acc_norm"
]
for key in possible_keys:
if key in row:
score = row[key]
if isinstance(score, (int, float)):
return float(score)
# If we have a 'results' field with nested data
if 'results' in row and isinstance(row['results'], dict):
for key, value in row['results'].items():
if benchmark_name.lower() in key.lower():
if isinstance(value, dict) and 'acc' in value:
return float(value['acc'])
elif isinstance(value, (int, float)):
return float(value)
logger.debug(f"No score found for {model_name} on {benchmark_name}")
return -1.0
except Exception as e:
logger.debug(f"Failed to get score for {model_name} on {benchmark_name}: {e}")
return -1.0
def find_top_models_for_benchmark(
self,
benchmark_name: str,
top_k: int = 5,
candidate_models: List[str] = None
) -> List[str]:
"""
Find top K models for a specific benchmark.
Args:
benchmark_name: Benchmark name (e.g., "MMLU")
top_k: Number of top models to return
candidate_models: List of models to check (if None, auto-discover)
Returns:
List of top model names
"""
logger.info(f"Finding top {top_k} models for {benchmark_name}...")
if candidate_models is None:
candidate_models = self.find_leaderboard_models(limit=50)
config_name = self.benchmark_configs.get(benchmark_name, "")
if not config_name:
logger.error(f"Unknown benchmark: {benchmark_name}")
return []
# Get scores for all candidates
model_scores = []
for model_name in candidate_models:
score = self.get_model_benchmark_score(model_name, benchmark_name, config_name)
if score >= 0:
model_scores.append((model_name, score))
logger.debug(f" {model_name}: {score:.3f}")
time.sleep(0.1) # Rate limiting
# Sort by score (descending)
model_scores.sort(key=lambda x: x[1], reverse=True)
# Get top K
top_models = [name for name, score in model_scores[:top_k]]
logger.info(f"Top {len(top_models)} models for {benchmark_name}:")
for i, (name, score) in enumerate(model_scores[:top_k], 1):
logger.info(f" {i}. {name}: {score:.3f}")
return top_models
class RealBenchmarkDataFetcher:
"""
Fetch real per-question benchmark data using dynamic top model selection.
"""
def __init__(self, output_dir: Path = Path("./data/benchmark_results")):
self.output_dir = output_dir
self.output_dir.mkdir(parents=True, exist_ok=True)
self.top_model_finder = TopModelFinder()
self.questions: Dict[str, Dict[str, Any]] = {}
def fetch_mmlu_with_top_models(
self,
top_k: int = 5,
max_questions: int = 1000
) -> Dict[str, Dict[str, Any]]:
"""
Fetch MMLU questions with results from top K models.
Args:
top_k: Number of top models to use
max_questions: Maximum questions to fetch
Returns:
Dictionary of questions with aggregated results
"""
logger.info("="*80)
logger.info(f"Fetching MMLU data with top {top_k} models")
logger.info("="*80)
# Find top models for MMLU
top_models = self.top_model_finder.find_top_models_for_benchmark(
"MMLU",
top_k=top_k
)
if not top_models:
logger.error("No top models found for MMLU")
return {}
# Fetch per-question results for each top model
question_results = defaultdict(lambda: {
'model_results': {},
'metadata': {}
})
for model_name in top_models:
logger.info(f"\nFetching results for {model_name}...")
try:
dataset_name = f"open-llm-leaderboard/details_{model_name}"
results = load_dataset(
dataset_name,
"harness_hendrycksTest_5",
split="latest"
)
logger.info(f" Loaded {len(results)} questions")
# Process each question
for idx, row in enumerate(results):
# Use 'example' field as unique ID (or doc_id if available)
question_id = f"mmlu_{idx}"
# Store metadata from first model
if not question_results[question_id]['metadata']:
question_results[question_id]['metadata'] = {
'question_text': row.get('example', ''),
'instruction': row.get('instruction', ''),
'choices': row.get('choices', []),
'source_benchmark': 'MMLU',
'domain': 'general' # MMLU is cross-domain
}
# Store correctness for this model
is_correct = row.get('metrics', {}).get('acc', 0.0) == 1.0
question_results[question_id]['model_results'][model_name] = is_correct
logger.info(f" ✓ Processed {len(results)} questions")
# Limit questions if needed
if len(question_results) >= max_questions:
logger.info(f" Reached max questions limit: {max_questions}")
break
except Exception as e:
logger.error(f" Failed to fetch {model_name}: {e}")
continue
# Compute success rates
final_questions = {}
for qid, data in question_results.items():
if len(data['model_results']) == 0:
continue
# Calculate success rate across models
correct_count = sum(1 for v in data['model_results'].values() if v)
total_models = len(data['model_results'])
success_rate = correct_count / total_models
# Classify difficulty
if success_rate < 0.3:
difficulty_tier = "low"
difficulty_label = "Hard"
elif success_rate < 0.7:
difficulty_tier = "medium"
difficulty_label = "Moderate"
else:
difficulty_tier = "high"
difficulty_label = "Easy"
final_questions[qid] = {
**data['metadata'],
'model_results': data['model_results'],
'success_rate': success_rate,
'num_models_tested': total_models,
'difficulty_tier': difficulty_tier,
'difficulty_label': difficulty_label
}
logger.info(f"\n✓ Collected {len(final_questions)} questions with {top_k} models")
return final_questions
def save_results(self, questions: Dict[str, Dict[str, Any]], filename: str = "real_benchmark_data.json"):
"""Save fetched results"""
output_path = self.output_dir / filename
data = {
"metadata": {
"total_questions": len(questions),
"fetched_at": time.strftime("%Y-%m-%d %H:%M:%S")
},
"questions": questions
}
with open(output_path, 'w') as f:
json.dump(data, f, indent=2)
logger.info(f"Saved results to {output_path}")
return output_path
def print_summary(self, questions: Dict[str, Dict[str, Any]]):
"""Print summary statistics"""
tier_counts = defaultdict(int)
success_rates = []
for q in questions.values():
tier_counts[q['difficulty_tier']] += 1
success_rates.append(q['success_rate'])
print("\n" + "="*80)
print("BENCHMARK DATA SUMMARY")
print("="*80)
print(f"\nTotal Questions: {len(questions)}")
print(f"\nDifficulty Distribution:")
total = len(questions)
for tier in ['low', 'medium', 'high']:
count = tier_counts[tier]
pct = count / total * 100 if total > 0 else 0
print(f" {tier.upper()}: {count} ({pct:.1f}%)")
if success_rates:
import numpy as np
print(f"\nSuccess Rate Statistics:")
print(f" Min: {np.min(success_rates):.1%}")
print(f" Max: {np.max(success_rates):.1%}")
print(f" Mean: {np.mean(success_rates):.1%}")
print(f" Median: {np.median(success_rates):.1%}")
print("\n" + "="*80)
def main():
"""Main execution"""
logger.info("="*80)
logger.info("Real Benchmark Data Fetcher with Dynamic Top Model Selection")
logger.info("="*80)
fetcher = RealBenchmarkDataFetcher()
# Fetch MMLU with top 5 models (dynamically selected)
questions = fetcher.fetch_mmlu_with_top_models(
top_k=5,
max_questions=1000
)
# Save results
fetcher.save_results(questions)
# Print summary
fetcher.print_summary(questions)
print("\n" + "="*80)
print("✓ Data collection complete!")
print("="*80)
print("\nNext steps:")
print("1. Review real_benchmark_data.json")
print("2. Build vector database with real success rates")
print("3. Test difficulty assessment on real prompts")
if __name__ == "__main__":
main()
|