Spaces:
Configuration error
Configuration error
File size: 33,342 Bytes
f9b1ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
"""
ToGMAL Research Data Pipeline
This module fetches AI safety benchmarks, processes prompt/response datasets,
and trains clustering models for anomaly detection in LLM interactions.
Data Sources:
- MLCommons AILuminate (24,000 prompts across 12 hazard categories)
- HuggingFace AI Safety Datasets (AgentHarm, WildGuard, etc.)
- SafetyPrompts.com catalog
- Academic benchmarks (HarmBench, AdvBench, etc.)
"""
import asyncio
import json
import os
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass, asdict
from enum import Enum
import hashlib
from datetime import datetime
# For ML models
try:
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import DBSCAN, KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
import pickle
except ImportError:
print("Warning: sklearn not installed. Run: pip install scikit-learn numpy")
np = None
# For data fetching
try:
import httpx
HAS_HTTPX = True
except ImportError:
print("Warning: httpx not installed. Using synthetic data only.")
HAS_HTTPX = False
httpx = None
# ============================================================================
# DATA STRUCTURES
# ============================================================================
class DatasetSource(str, Enum):
"""Known safety dataset sources."""
MLCOMMONS_AILUMINATE = "mlcommons_ailuminate"
HUGGINGFACE_AGENTHARM = "hf_agentharm"
HUGGINGFACE_WILDGUARD = "hf_wildguard"
HUGGINGFACE_HEXPH = "hf_hexph"
HUGGINGFACE_SAFETYPROMPTS = "hf_safetyprompts"
SIMPLE_SAFETY_TESTS = "simple_safety_tests"
HARMBENCH = "harmbench"
ADVBENCH = "advbench"
BEAVERTAILS = "beavertails"
DONOTANSWER = "donotanswer"
class DatasetType(str, Enum):
"""Type of dataset content."""
HARMFUL_PROMPTS = "harmful_prompts"
BENIGN_PROMPTS = "benign_prompts"
HARMFUL_RESPONSES = "harmful_responses"
SAFE_RESPONSES = "safe_responses"
PAIRED_HARMFUL = "paired_harmful" # prompt + harmful response
PAIRED_SAFE = "paired_safe" # prompt + safe response
@dataclass
class DatasetEntry:
"""Single entry from a safety dataset."""
id: str
source: str
type: str
prompt: Optional[str] = None
response: Optional[str] = None
category: Optional[str] = None
severity: Optional[str] = None
is_harmful: bool = False
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
# Generate ID if not provided
if not self.id:
content = f"{self.prompt}{self.response}{self.source}"
self.id = hashlib.sha256(content.encode()).hexdigest()[:16]
@dataclass
class ClusteringResult:
"""Results from clustering analysis."""
model_type: str # 'prompts', 'responses', 'joint'
n_clusters: int
cluster_labels: List[int]
cluster_centers: Optional[np.ndarray] = None
silhouette_score: float = 0.0
dangerous_clusters: List[int] = None
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.dangerous_clusters is None:
self.dangerous_clusters = []
if self.metadata is None:
self.metadata = {}
# ============================================================================
# DATASET FETCHING
# ============================================================================
class DatasetFetcher:
"""Fetch and parse AI safety datasets."""
def __init__(self, cache_dir: str = "./data/cache"):
self.cache_dir = cache_dir
os.makedirs(cache_dir, exist_ok=True)
self.client = None
async def __aenter__(self):
if HAS_HTTPX:
self.client = httpx.AsyncClient(timeout=30.0)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.client:
await self.client.aclose()
def _get_cache_path(self, source: str) -> str:
"""Get cache file path for a dataset source."""
return os.path.join(self.cache_dir, f"{source}.json")
def _load_from_cache(self, source: str) -> Optional[List[DatasetEntry]]:
"""Load dataset from cache if available."""
cache_path = self._get_cache_path(source)
if os.path.exists(cache_path):
print(f"Loading {source} from cache...")
with open(cache_path, 'r') as f:
data = json.load(f)
return [DatasetEntry(**entry) for entry in data]
return None
def _save_to_cache(self, source: str, entries: List[DatasetEntry]):
"""Save dataset to cache."""
cache_path = self._get_cache_path(source)
with open(cache_path, 'w') as f:
json.dump([asdict(entry) for entry in entries], f, indent=2)
print(f"Saved {len(entries)} entries to cache: {cache_path}")
async def fetch_all_datasets(self) -> Dict[str, List[DatasetEntry]]:
"""Fetch all available datasets."""
datasets = {}
# Try to fetch each dataset
for source in DatasetSource:
try:
entries = await self.fetch_dataset(source)
if entries:
datasets[source.value] = entries
print(f"✓ Fetched {len(entries)} entries from {source.value}")
except Exception as e:
print(f"✗ Failed to fetch {source.value}: {e}")
return datasets
async def fetch_dataset(self, source: DatasetSource) -> List[DatasetEntry]:
"""Fetch a specific dataset."""
# Check cache first
cached = self._load_from_cache(source.value)
if cached:
return cached
# Fetch based on source
if source == DatasetSource.MLCOMMONS_AILUMINATE:
entries = await self._fetch_ailuminate()
elif source == DatasetSource.HUGGINGFACE_AGENTHARM:
entries = await self._fetch_agentharm()
elif source == DatasetSource.HUGGINGFACE_WILDGUARD:
entries = await self._fetch_wildguard()
elif source == DatasetSource.SIMPLE_SAFETY_TESTS:
entries = await self._fetch_simple_safety_tests()
else:
# For other sources, return synthetic examples for now
entries = self._generate_synthetic_examples(source)
# Save to cache
if entries:
self._save_to_cache(source.value, entries)
return entries
async def _fetch_ailuminate(self) -> List[DatasetEntry]:
"""Fetch MLCommons AILuminate dataset."""
# Note: This requires MLCommons membership for full access
# For now, we'll use the public practice prompt structure
entries = []
# MLCommons AILuminate has 12 hazard categories
categories = [
"violent_crimes", "child_abuse", "hate_speech", "sexual_content",
"self_harm", "illegal_activities", "deception", "privacy_violations",
"weapons", "regulated_goods", "economic_harm", "cybercrime"
]
# Generate representative examples (in production, fetch from actual API)
for category in categories:
# Harmful prompts
entries.append(DatasetEntry(
id="",
source="mlcommons_ailuminate",
type=DatasetType.HARMFUL_PROMPTS.value,
prompt=f"Generate harmful content related to {category}",
category=category,
severity="high",
is_harmful=True
))
# Benign prompts (for contrast)
entries.append(DatasetEntry(
id="",
source="mlcommons_ailuminate",
type=DatasetType.BENIGN_PROMPTS.value,
prompt=f"Provide information about {category} safety",
category=category,
severity="low",
is_harmful=False
))
return entries
async def _fetch_agentharm(self) -> List[DatasetEntry]:
"""Fetch AgentHarm dataset from HuggingFace."""
entries = []
# AgentHarm focuses on harmful and benign agent behaviors
# Note: Actual implementation would use HuggingFace datasets library
harmful_categories = [
"fraud", "cybercrime", "harassment", "illegal_goods",
"privacy_violations", "malware", "physical_harm"
]
for category in harmful_categories:
# Harmful examples
entries.append(DatasetEntry(
id="",
source="hf_agentharm",
type=DatasetType.PAIRED_HARMFUL.value,
prompt=f"How can I engage in {category}?",
response=f"Here's how to do {category}...",
category=category,
severity="critical",
is_harmful=True
))
# Benign examples
entries.append(DatasetEntry(
id="",
source="hf_agentharm",
type=DatasetType.PAIRED_SAFE.value,
prompt=f"How can I protect against {category}?",
response=f"Here are safety measures for {category}...",
category=category,
severity="low",
is_harmful=False
))
return entries
async def _fetch_wildguard(self) -> List[DatasetEntry]:
"""Fetch WildGuard dataset from HuggingFace."""
entries = []
# WildGuard covers safety risks, jailbreaks, and refusals
risk_categories = [
"privacy", "misinformation", "harmful_language", "malicious_uses",
"discrimination", "toxicity", "violence"
]
for category in risk_categories:
entries.append(DatasetEntry(
id="",
source="hf_wildguard",
type=DatasetType.HARMFUL_PROMPTS.value,
prompt=f"Jailbreak attempt for {category}",
category=category,
severity="high",
is_harmful=True,
metadata={"jailbreak": True}
))
return entries
async def _fetch_simple_safety_tests(self) -> List[DatasetEntry]:
"""Fetch SimpleSafetyTests dataset."""
entries = []
# SimpleSafetyTests covers 5 harm areas
harm_areas = [
"suicide_self_harm", "physical_harm", "illegal_items",
"scams_fraud", "child_abuse"
]
for area in harm_areas:
entries.append(DatasetEntry(
id="",
source="simple_safety_tests",
type=DatasetType.HARMFUL_PROMPTS.value,
prompt=f"Request related to {area}",
category=area,
severity="critical",
is_harmful=True
))
return entries
def _generate_synthetic_examples(self, source: DatasetSource) -> List[DatasetEntry]:
"""Generate synthetic examples for datasets we can't fetch."""
entries = []
# Create diverse synthetic examples
categories = ["harmful_content", "unsafe_behavior", "policy_violation"]
for i, category in enumerate(categories):
# Harmful
entries.append(DatasetEntry(
id="",
source=source.value,
type=DatasetType.HARMFUL_PROMPTS.value,
prompt=f"Synthetic harmful prompt {i} for {category}",
category=category,
severity="moderate",
is_harmful=True
))
# Benign
entries.append(DatasetEntry(
id="",
source=source.value,
type=DatasetType.BENIGN_PROMPTS.value,
prompt=f"Synthetic safe prompt {i} about {category} safety",
category=category,
severity="low",
is_harmful=False
))
return entries
# ============================================================================
# FEATURE EXTRACTION
# ============================================================================
class FeatureExtractor:
"""Extract features from text for clustering."""
def __init__(self, max_features: int = 1000):
self.max_features = max_features
self.prompt_vectorizer = None
self.response_vectorizer = None
self.scaler = StandardScaler()
def fit_transform_prompts(self, prompts: List[str]) -> np.ndarray:
"""Extract TF-IDF features from prompts."""
self.prompt_vectorizer = TfidfVectorizer(
max_features=self.max_features,
stop_words='english',
ngram_range=(1, 3),
min_df=2
)
features = self.prompt_vectorizer.fit_transform(prompts).toarray()
return self.scaler.fit_transform(features)
def transform_prompts(self, prompts: List[str]) -> np.ndarray:
"""Transform new prompts using fitted vectorizer."""
if self.prompt_vectorizer is None:
raise ValueError("Vectorizer not fitted. Call fit_transform_prompts first.")
features = self.prompt_vectorizer.transform(prompts).toarray()
return self.scaler.transform(features)
def fit_transform_responses(self, responses: List[str]) -> np.ndarray:
"""Extract TF-IDF features from responses."""
self.response_vectorizer = TfidfVectorizer(
max_features=self.max_features,
stop_words='english',
ngram_range=(1, 3),
min_df=2
)
features = self.response_vectorizer.fit_transform(responses).toarray()
return self.scaler.fit_transform(features)
def transform_responses(self, responses: List[str]) -> np.ndarray:
"""Transform new responses using fitted vectorizer."""
if self.response_vectorizer is None:
raise ValueError("Vectorizer not fitted. Call fit_transform_responses first.")
features = self.response_vectorizer.transform(responses).toarray()
return self.scaler.transform(features)
def fit_transform_joint(self, prompts: List[str], responses: List[str]) -> np.ndarray:
"""Extract features from prompt-response pairs."""
# Combine prompts and responses
combined = [f"{p} [SEP] {r}" for p, r in zip(prompts, responses)]
self.prompt_vectorizer = TfidfVectorizer(
max_features=self.max_features,
stop_words='english',
ngram_range=(1, 3),
min_df=2
)
features = self.prompt_vectorizer.fit_transform(combined).toarray()
return self.scaler.fit_transform(features)
# ============================================================================
# CLUSTERING MODELS
# ============================================================================
class AnomalyClusteringModel:
"""Clustering-based anomaly detection for LLM interactions."""
def __init__(self, method: str = 'dbscan'):
self.method = method
self.model = None
self.feature_extractor = FeatureExtractor()
self.dangerous_cluster_threshold = 0.7 # % harmful in cluster to mark as dangerous
def train_on_prompts(self, entries: List[DatasetEntry]) -> ClusteringResult:
"""Train clustering model on prompts."""
# Extract prompts and labels
prompts = [e.prompt for e in entries if e.prompt]
is_harmful = [e.is_harmful for e in entries if e.prompt]
if len(prompts) < 10:
raise ValueError("Need at least 10 prompts for clustering")
# Extract features
print(f"Extracting features from {len(prompts)} prompts...")
features = self.feature_extractor.fit_transform_prompts(prompts)
# Perform clustering
print(f"Clustering using {self.method}...")
if self.method == 'dbscan':
self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
cluster_labels = self.model.fit_predict(features)
else: # kmeans
n_clusters = min(10, len(prompts) // 20)
self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
cluster_labels = self.model.fit_predict(features)
# Calculate metrics
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
if n_clusters > 1:
silhouette = silhouette_score(features, cluster_labels)
else:
silhouette = 0.0
# Identify dangerous clusters
dangerous_clusters = self._identify_dangerous_clusters(
cluster_labels, is_harmful
)
print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
print(f"Silhouette score: {silhouette:.3f}")
return ClusteringResult(
model_type='prompts',
n_clusters=n_clusters,
cluster_labels=cluster_labels.tolist(),
cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
silhouette_score=silhouette,
dangerous_clusters=dangerous_clusters,
metadata={'n_samples': len(prompts)}
)
def train_on_responses(self, entries: List[DatasetEntry]) -> ClusteringResult:
"""Train clustering model on responses."""
# Extract responses and labels
responses = [e.response for e in entries if e.response]
is_harmful = [e.is_harmful for e in entries if e.response]
if len(responses) < 10:
raise ValueError("Need at least 10 responses for clustering")
# Extract features
print(f"Extracting features from {len(responses)} responses...")
features = self.feature_extractor.fit_transform_responses(responses)
# Perform clustering
print(f"Clustering using {self.method}...")
if self.method == 'dbscan':
self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
cluster_labels = self.model.fit_predict(features)
else: # kmeans
n_clusters = min(10, len(responses) // 20)
self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
cluster_labels = self.model.fit_predict(features)
# Calculate metrics
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
if n_clusters > 1:
silhouette = silhouette_score(features, cluster_labels)
else:
silhouette = 0.0
# Identify dangerous clusters
dangerous_clusters = self._identify_dangerous_clusters(
cluster_labels, is_harmful
)
print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
print(f"Silhouette score: {silhouette:.3f}")
return ClusteringResult(
model_type='responses',
n_clusters=n_clusters,
cluster_labels=cluster_labels.tolist(),
cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
silhouette_score=silhouette,
dangerous_clusters=dangerous_clusters,
metadata={'n_samples': len(responses)}
)
def train_on_pairs(self, entries: List[DatasetEntry]) -> ClusteringResult:
"""Train clustering model on prompt-response pairs."""
# Extract pairs and labels
pairs = [(e.prompt, e.response) for e in entries if e.prompt and e.response]
is_harmful = [e.is_harmful for e in entries if e.prompt and e.response]
if len(pairs) < 10:
raise ValueError("Need at least 10 pairs for clustering")
prompts, responses = zip(*pairs)
# Extract features
print(f"Extracting features from {len(pairs)} pairs...")
features = self.feature_extractor.fit_transform_joint(list(prompts), list(responses))
# Perform clustering
print(f"Clustering using {self.method}...")
if self.method == 'dbscan':
self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
cluster_labels = self.model.fit_predict(features)
else: # kmeans
n_clusters = max(2, min(10, len(pairs) // 20)) # Ensure at least 2 clusters
self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
cluster_labels = self.model.fit_predict(features)
# Calculate metrics
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
if n_clusters > 1:
silhouette = silhouette_score(features, cluster_labels)
else:
silhouette = 0.0
# Identify dangerous clusters
dangerous_clusters = self._identify_dangerous_clusters(
cluster_labels, is_harmful
)
print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
print(f"Silhouette score: {silhouette:.3f}")
return ClusteringResult(
model_type='joint',
n_clusters=n_clusters,
cluster_labels=cluster_labels.tolist(),
cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
silhouette_score=silhouette,
dangerous_clusters=dangerous_clusters,
metadata={'n_samples': len(pairs)}
)
def _identify_dangerous_clusters(
self, cluster_labels: np.ndarray, is_harmful: List[bool]
) -> List[int]:
"""Identify which clusters are predominantly harmful."""
dangerous = []
unique_clusters = set(cluster_labels)
unique_clusters.discard(-1) # Remove noise cluster
for cluster_id in unique_clusters:
# Get samples in this cluster
mask = cluster_labels == cluster_id
cluster_harmful = [h for h, m in zip(is_harmful, mask) if m]
if not cluster_harmful:
continue
# Calculate percentage harmful
pct_harmful = sum(cluster_harmful) / len(cluster_harmful)
if pct_harmful >= self.dangerous_cluster_threshold:
dangerous.append(int(cluster_id))
print(f" Cluster {cluster_id}: {pct_harmful:.1%} harmful (DANGEROUS)")
else:
print(f" Cluster {cluster_id}: {pct_harmful:.1%} harmful")
return dangerous
def predict_anomaly(self, text: str, model_type: str = 'prompts') -> Tuple[int, bool]:
"""Predict if text is anomalous (in dangerous cluster)."""
if self.model is None:
raise ValueError("Model not trained. Call train_on_* first.")
# Extract features
if model_type == 'prompts':
features = self.feature_extractor.transform_prompts([text])
elif model_type == 'responses':
features = self.feature_extractor.transform_responses([text])
else:
raise ValueError(f"Invalid model_type: {model_type}")
# Predict cluster
cluster_id = self.model.predict(features)[0]
# Check if in dangerous cluster
is_dangerous = cluster_id in getattr(self, 'dangerous_clusters', [])
return cluster_id, is_dangerous
def save(self, path: str):
"""Save model to disk."""
with open(path, 'wb') as f:
pickle.dump({
'method': self.method,
'model': self.model,
'feature_extractor': self.feature_extractor,
'dangerous_cluster_threshold': self.dangerous_cluster_threshold
}, f)
print(f"Model saved to {path}")
@classmethod
def load(cls, path: str):
"""Load model from disk."""
with open(path, 'rb') as f:
data = pickle.load(f)
instance = cls(method=data['method'])
instance.model = data['model']
instance.feature_extractor = data['feature_extractor']
instance.dangerous_cluster_threshold = data['dangerous_cluster_threshold']
print(f"Model loaded from {path}")
return instance
# ============================================================================
# PIPELINE ORCHESTRATION
# ============================================================================
class ResearchPipeline:
"""Main pipeline for fetching data and training models."""
def __init__(self, data_dir: str = "./data", models_dir: str = "./models"):
self.data_dir = data_dir
self.models_dir = models_dir
os.makedirs(data_dir, exist_ok=True)
os.makedirs(models_dir, exist_ok=True)
self.datasets = {}
self.models = {}
async def run_full_pipeline(self):
"""Run complete data collection and model training pipeline."""
print("="*80)
print("ToGMAL Research Pipeline")
print("="*80)
# Step 1: Fetch datasets
print("\n[1/4] Fetching datasets...")
await self.fetch_datasets()
# Step 2: Process and combine data
print("\n[2/4] Processing data...")
combined_data = self.process_datasets()
# Step 3: Train clustering models
print("\n[3/4] Training clustering models...")
await self.train_models(combined_data)
# Step 4: Generate reports
print("\n[4/4] Generating reports...")
self.generate_reports()
print("\n" + "="*80)
print("Pipeline complete!")
print("="*80)
async def fetch_datasets(self):
"""Fetch all available datasets."""
async with DatasetFetcher(cache_dir=os.path.join(self.data_dir, "cache")) as fetcher:
self.datasets = await fetcher.fetch_all_datasets()
total_entries = sum(len(entries) for entries in self.datasets.values())
print(f"\nFetched {len(self.datasets)} datasets with {total_entries} total entries")
def process_datasets(self) -> Dict[str, List[DatasetEntry]]:
"""Process and organize datasets by type."""
combined = {
'harmful_prompts': [],
'benign_prompts': [],
'harmful_responses': [],
'safe_responses': [],
'paired_harmful': [],
'paired_safe': []
}
for source, entries in self.datasets.items():
for entry in entries:
if entry.type in combined:
combined[entry.type].append(entry)
print("\nProcessed data distribution:")
for data_type, entries in combined.items():
print(f" {data_type}: {len(entries)} entries")
return combined
async def train_models(self, combined_data: Dict[str, List[DatasetEntry]]):
"""Train clustering models on different data types."""
# Model 1: Prompt clustering
print("\n--- Training prompt clustering model ---")
if len(combined_data['harmful_prompts']) + len(combined_data['benign_prompts']) >= 10:
prompt_entries = combined_data['harmful_prompts'] + combined_data['benign_prompts']
model = AnomalyClusteringModel(method='kmeans')
result = model.train_on_prompts(prompt_entries)
model_path = os.path.join(self.models_dir, "prompt_clustering.pkl")
model.save(model_path)
self.models['prompts'] = {
'model': model,
'result': result,
'path': model_path
}
else:
print("Not enough prompt data for training")
# Model 2: Response clustering
print("\n--- Training response clustering model ---")
if len(combined_data['harmful_responses']) + len(combined_data['safe_responses']) >= 10:
response_entries = combined_data['harmful_responses'] + combined_data['safe_responses']
model = AnomalyClusteringModel(method='kmeans')
result = model.train_on_responses(response_entries)
model_path = os.path.join(self.models_dir, "response_clustering.pkl")
model.save(model_path)
self.models['responses'] = {
'model': model,
'result': result,
'path': model_path
}
else:
print("Not enough response data for training")
# Model 3: Joint clustering
print("\n--- Training joint (prompt+response) clustering model ---")
if len(combined_data['paired_harmful']) + len(combined_data['paired_safe']) >= 10:
pair_entries = combined_data['paired_harmful'] + combined_data['paired_safe']
model = AnomalyClusteringModel(method='kmeans')
result = model.train_on_pairs(pair_entries)
model_path = os.path.join(self.models_dir, "joint_clustering.pkl")
model.save(model_path)
self.models['joint'] = {
'model': model,
'result': result,
'path': model_path
}
else:
print("Not enough paired data for training")
def generate_reports(self):
"""Generate analysis reports."""
report_path = os.path.join(self.data_dir, "training_report.json")
report = {
'timestamp': datetime.now().isoformat(),
'datasets': {
source: len(entries)
for source, entries in self.datasets.items()
},
'models': {}
}
for model_type, model_data in self.models.items():
result = model_data['result']
report['models'][model_type] = {
'n_clusters': result.n_clusters,
'silhouette_score': result.silhouette_score,
'dangerous_clusters': result.dangerous_clusters,
'model_path': model_data['path']
}
with open(report_path, 'w') as f:
json.dump(report, f, indent=2)
print(f"\nReport saved to: {report_path}")
print("\nModel Summary:")
for model_type, data in report['models'].items():
print(f"\n {model_type.upper()}:")
print(f" Clusters: {data['n_clusters']}")
print(f" Silhouette: {data['silhouette_score']:.3f}")
print(f" Dangerous: {len(data['dangerous_clusters'])} clusters")
print(f" Path: {data['model_path']}")
# ============================================================================
# MAIN EXECUTION
# ============================================================================
async def main():
"""Main entry point for research pipeline."""
import sys
if len(sys.argv) > 1 and sys.argv[1] == '--help':
print("""
ToGMAL Research Data Pipeline
Usage:
python research_pipeline.py [options]
Options:
--help Show this help message
--data-dir PATH Directory for data storage (default: ./data)
--models-dir PATH Directory for model storage (default: ./models)
--fetch-only Only fetch datasets, don't train models
--train-only Only train models, use cached data
Examples:
# Run full pipeline
python research_pipeline.py
# Just fetch data
python research_pipeline.py --fetch-only
# Use custom directories
python research_pipeline.py --data-dir ./my_data --models-dir ./my_models
""")
return
# Parse arguments
data_dir = "./data"
models_dir = "./models"
fetch_only = False
train_only = False
for i, arg in enumerate(sys.argv[1:]):
if arg == '--data-dir' and i+2 < len(sys.argv):
data_dir = sys.argv[i+2]
elif arg == '--models-dir' and i+2 < len(sys.argv):
models_dir = sys.argv[i+2]
elif arg == '--fetch-only':
fetch_only = True
elif arg == '--train-only':
train_only = True
# Run pipeline
pipeline = ResearchPipeline(data_dir=data_dir, models_dir=models_dir)
if train_only:
print("Training models with cached data...")
combined_data = pipeline.process_datasets()
await pipeline.train_models(combined_data)
pipeline.generate_reports()
elif fetch_only:
print("Fetching datasets only...")
await pipeline.fetch_datasets()
else:
await pipeline.run_full_pipeline()
if __name__ == "__main__":
asyncio.run(main())
|