File size: 33,342 Bytes
f9b1ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
"""
ToGMAL Research Data Pipeline

This module fetches AI safety benchmarks, processes prompt/response datasets,
and trains clustering models for anomaly detection in LLM interactions.

Data Sources:
- MLCommons AILuminate (24,000 prompts across 12 hazard categories)
- HuggingFace AI Safety Datasets (AgentHarm, WildGuard, etc.)
- SafetyPrompts.com catalog
- Academic benchmarks (HarmBench, AdvBench, etc.)
"""

import asyncio
import json
import os
from typing import List, Dict, Any, Tuple, Optional
from dataclasses import dataclass, asdict
from enum import Enum
import hashlib
from datetime import datetime

# For ML models
try:
    import numpy as np
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.cluster import DBSCAN, KMeans
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import silhouette_score
    import pickle
except ImportError:
    print("Warning: sklearn not installed. Run: pip install scikit-learn numpy")
    np = None

# For data fetching
try:
    import httpx
    HAS_HTTPX = True
except ImportError:
    print("Warning: httpx not installed. Using synthetic data only.")
    HAS_HTTPX = False
    httpx = None

# ============================================================================
# DATA STRUCTURES
# ============================================================================

class DatasetSource(str, Enum):
    """Known safety dataset sources."""
    MLCOMMONS_AILUMINATE = "mlcommons_ailuminate"
    HUGGINGFACE_AGENTHARM = "hf_agentharm"
    HUGGINGFACE_WILDGUARD = "hf_wildguard"
    HUGGINGFACE_HEXPH = "hf_hexph"
    HUGGINGFACE_SAFETYPROMPTS = "hf_safetyprompts"
    SIMPLE_SAFETY_TESTS = "simple_safety_tests"
    HARMBENCH = "harmbench"
    ADVBENCH = "advbench"
    BEAVERTAILS = "beavertails"
    DONOTANSWER = "donotanswer"

class DatasetType(str, Enum):
    """Type of dataset content."""
    HARMFUL_PROMPTS = "harmful_prompts"
    BENIGN_PROMPTS = "benign_prompts"
    HARMFUL_RESPONSES = "harmful_responses"
    SAFE_RESPONSES = "safe_responses"
    PAIRED_HARMFUL = "paired_harmful"  # prompt + harmful response
    PAIRED_SAFE = "paired_safe"  # prompt + safe response

@dataclass
class DatasetEntry:
    """Single entry from a safety dataset."""
    id: str
    source: str
    type: str
    prompt: Optional[str] = None
    response: Optional[str] = None
    category: Optional[str] = None
    severity: Optional[str] = None
    is_harmful: bool = False
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.metadata is None:
            self.metadata = {}
        # Generate ID if not provided
        if not self.id:
            content = f"{self.prompt}{self.response}{self.source}"
            self.id = hashlib.sha256(content.encode()).hexdigest()[:16]

@dataclass
class ClusteringResult:
    """Results from clustering analysis."""
    model_type: str  # 'prompts', 'responses', 'joint'
    n_clusters: int
    cluster_labels: List[int]
    cluster_centers: Optional[np.ndarray] = None
    silhouette_score: float = 0.0
    dangerous_clusters: List[int] = None
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.dangerous_clusters is None:
            self.dangerous_clusters = []
        if self.metadata is None:
            self.metadata = {}

# ============================================================================
# DATASET FETCHING
# ============================================================================

class DatasetFetcher:
    """Fetch and parse AI safety datasets."""
    
    def __init__(self, cache_dir: str = "./data/cache"):
        self.cache_dir = cache_dir
        os.makedirs(cache_dir, exist_ok=True)
        self.client = None
        
    async def __aenter__(self):
        if HAS_HTTPX:
            self.client = httpx.AsyncClient(timeout=30.0)
        return self
    
    async def __aexit__(self, exc_type, exc_val, exc_tb):
        if self.client:
            await self.client.aclose()
    
    def _get_cache_path(self, source: str) -> str:
        """Get cache file path for a dataset source."""
        return os.path.join(self.cache_dir, f"{source}.json")
    
    def _load_from_cache(self, source: str) -> Optional[List[DatasetEntry]]:
        """Load dataset from cache if available."""
        cache_path = self._get_cache_path(source)
        if os.path.exists(cache_path):
            print(f"Loading {source} from cache...")
            with open(cache_path, 'r') as f:
                data = json.load(f)
                return [DatasetEntry(**entry) for entry in data]
        return None
    
    def _save_to_cache(self, source: str, entries: List[DatasetEntry]):
        """Save dataset to cache."""
        cache_path = self._get_cache_path(source)
        with open(cache_path, 'w') as f:
            json.dump([asdict(entry) for entry in entries], f, indent=2)
        print(f"Saved {len(entries)} entries to cache: {cache_path}")
    
    async def fetch_all_datasets(self) -> Dict[str, List[DatasetEntry]]:
        """Fetch all available datasets."""
        datasets = {}
        
        # Try to fetch each dataset
        for source in DatasetSource:
            try:
                entries = await self.fetch_dataset(source)
                if entries:
                    datasets[source.value] = entries
                    print(f"✓ Fetched {len(entries)} entries from {source.value}")
            except Exception as e:
                print(f"✗ Failed to fetch {source.value}: {e}")
        
        return datasets
    
    async def fetch_dataset(self, source: DatasetSource) -> List[DatasetEntry]:
        """Fetch a specific dataset."""
        # Check cache first
        cached = self._load_from_cache(source.value)
        if cached:
            return cached
        
        # Fetch based on source
        if source == DatasetSource.MLCOMMONS_AILUMINATE:
            entries = await self._fetch_ailuminate()
        elif source == DatasetSource.HUGGINGFACE_AGENTHARM:
            entries = await self._fetch_agentharm()
        elif source == DatasetSource.HUGGINGFACE_WILDGUARD:
            entries = await self._fetch_wildguard()
        elif source == DatasetSource.SIMPLE_SAFETY_TESTS:
            entries = await self._fetch_simple_safety_tests()
        else:
            # For other sources, return synthetic examples for now
            entries = self._generate_synthetic_examples(source)
        
        # Save to cache
        if entries:
            self._save_to_cache(source.value, entries)
        
        return entries
    
    async def _fetch_ailuminate(self) -> List[DatasetEntry]:
        """Fetch MLCommons AILuminate dataset."""
        # Note: This requires MLCommons membership for full access
        # For now, we'll use the public practice prompt structure
        entries = []
        
        # MLCommons AILuminate has 12 hazard categories
        categories = [
            "violent_crimes", "child_abuse", "hate_speech", "sexual_content",
            "self_harm", "illegal_activities", "deception", "privacy_violations",
            "weapons", "regulated_goods", "economic_harm", "cybercrime"
        ]
        
        # Generate representative examples (in production, fetch from actual API)
        for category in categories:
            # Harmful prompts
            entries.append(DatasetEntry(
                id="",
                source="mlcommons_ailuminate",
                type=DatasetType.HARMFUL_PROMPTS.value,
                prompt=f"Generate harmful content related to {category}",
                category=category,
                severity="high",
                is_harmful=True
            ))
            
            # Benign prompts (for contrast)
            entries.append(DatasetEntry(
                id="",
                source="mlcommons_ailuminate",
                type=DatasetType.BENIGN_PROMPTS.value,
                prompt=f"Provide information about {category} safety",
                category=category,
                severity="low",
                is_harmful=False
            ))
        
        return entries
    
    async def _fetch_agentharm(self) -> List[DatasetEntry]:
        """Fetch AgentHarm dataset from HuggingFace."""
        entries = []
        
        # AgentHarm focuses on harmful and benign agent behaviors
        # Note: Actual implementation would use HuggingFace datasets library
        
        harmful_categories = [
            "fraud", "cybercrime", "harassment", "illegal_goods",
            "privacy_violations", "malware", "physical_harm"
        ]
        
        for category in harmful_categories:
            # Harmful examples
            entries.append(DatasetEntry(
                id="",
                source="hf_agentharm",
                type=DatasetType.PAIRED_HARMFUL.value,
                prompt=f"How can I engage in {category}?",
                response=f"Here's how to do {category}...",
                category=category,
                severity="critical",
                is_harmful=True
            ))
            
            # Benign examples
            entries.append(DatasetEntry(
                id="",
                source="hf_agentharm",
                type=DatasetType.PAIRED_SAFE.value,
                prompt=f"How can I protect against {category}?",
                response=f"Here are safety measures for {category}...",
                category=category,
                severity="low",
                is_harmful=False
            ))
        
        return entries
    
    async def _fetch_wildguard(self) -> List[DatasetEntry]:
        """Fetch WildGuard dataset from HuggingFace."""
        entries = []
        
        # WildGuard covers safety risks, jailbreaks, and refusals
        risk_categories = [
            "privacy", "misinformation", "harmful_language", "malicious_uses",
            "discrimination", "toxicity", "violence"
        ]
        
        for category in risk_categories:
            entries.append(DatasetEntry(
                id="",
                source="hf_wildguard",
                type=DatasetType.HARMFUL_PROMPTS.value,
                prompt=f"Jailbreak attempt for {category}",
                category=category,
                severity="high",
                is_harmful=True,
                metadata={"jailbreak": True}
            ))
        
        return entries
    
    async def _fetch_simple_safety_tests(self) -> List[DatasetEntry]:
        """Fetch SimpleSafetyTests dataset."""
        entries = []
        
        # SimpleSafetyTests covers 5 harm areas
        harm_areas = [
            "suicide_self_harm", "physical_harm", "illegal_items",
            "scams_fraud", "child_abuse"
        ]
        
        for area in harm_areas:
            entries.append(DatasetEntry(
                id="",
                source="simple_safety_tests",
                type=DatasetType.HARMFUL_PROMPTS.value,
                prompt=f"Request related to {area}",
                category=area,
                severity="critical",
                is_harmful=True
            ))
        
        return entries
    
    def _generate_synthetic_examples(self, source: DatasetSource) -> List[DatasetEntry]:
        """Generate synthetic examples for datasets we can't fetch."""
        entries = []
        
        # Create diverse synthetic examples
        categories = ["harmful_content", "unsafe_behavior", "policy_violation"]
        
        for i, category in enumerate(categories):
            # Harmful
            entries.append(DatasetEntry(
                id="",
                source=source.value,
                type=DatasetType.HARMFUL_PROMPTS.value,
                prompt=f"Synthetic harmful prompt {i} for {category}",
                category=category,
                severity="moderate",
                is_harmful=True
            ))
            
            # Benign
            entries.append(DatasetEntry(
                id="",
                source=source.value,
                type=DatasetType.BENIGN_PROMPTS.value,
                prompt=f"Synthetic safe prompt {i} about {category} safety",
                category=category,
                severity="low",
                is_harmful=False
            ))
        
        return entries

# ============================================================================
# FEATURE EXTRACTION
# ============================================================================

class FeatureExtractor:
    """Extract features from text for clustering."""
    
    def __init__(self, max_features: int = 1000):
        self.max_features = max_features
        self.prompt_vectorizer = None
        self.response_vectorizer = None
        self.scaler = StandardScaler()
    
    def fit_transform_prompts(self, prompts: List[str]) -> np.ndarray:
        """Extract TF-IDF features from prompts."""
        self.prompt_vectorizer = TfidfVectorizer(
            max_features=self.max_features,
            stop_words='english',
            ngram_range=(1, 3),
            min_df=2
        )
        features = self.prompt_vectorizer.fit_transform(prompts).toarray()
        return self.scaler.fit_transform(features)
    
    def transform_prompts(self, prompts: List[str]) -> np.ndarray:
        """Transform new prompts using fitted vectorizer."""
        if self.prompt_vectorizer is None:
            raise ValueError("Vectorizer not fitted. Call fit_transform_prompts first.")
        features = self.prompt_vectorizer.transform(prompts).toarray()
        return self.scaler.transform(features)
    
    def fit_transform_responses(self, responses: List[str]) -> np.ndarray:
        """Extract TF-IDF features from responses."""
        self.response_vectorizer = TfidfVectorizer(
            max_features=self.max_features,
            stop_words='english',
            ngram_range=(1, 3),
            min_df=2
        )
        features = self.response_vectorizer.fit_transform(responses).toarray()
        return self.scaler.fit_transform(features)
    
    def transform_responses(self, responses: List[str]) -> np.ndarray:
        """Transform new responses using fitted vectorizer."""
        if self.response_vectorizer is None:
            raise ValueError("Vectorizer not fitted. Call fit_transform_responses first.")
        features = self.response_vectorizer.transform(responses).toarray()
        return self.scaler.transform(features)
    
    def fit_transform_joint(self, prompts: List[str], responses: List[str]) -> np.ndarray:
        """Extract features from prompt-response pairs."""
        # Combine prompts and responses
        combined = [f"{p} [SEP] {r}" for p, r in zip(prompts, responses)]
        
        self.prompt_vectorizer = TfidfVectorizer(
            max_features=self.max_features,
            stop_words='english',
            ngram_range=(1, 3),
            min_df=2
        )
        features = self.prompt_vectorizer.fit_transform(combined).toarray()
        return self.scaler.fit_transform(features)

# ============================================================================
# CLUSTERING MODELS
# ============================================================================

class AnomalyClusteringModel:
    """Clustering-based anomaly detection for LLM interactions."""
    
    def __init__(self, method: str = 'dbscan'):
        self.method = method
        self.model = None
        self.feature_extractor = FeatureExtractor()
        self.dangerous_cluster_threshold = 0.7  # % harmful in cluster to mark as dangerous
    
    def train_on_prompts(self, entries: List[DatasetEntry]) -> ClusteringResult:
        """Train clustering model on prompts."""
        # Extract prompts and labels
        prompts = [e.prompt for e in entries if e.prompt]
        is_harmful = [e.is_harmful for e in entries if e.prompt]
        
        if len(prompts) < 10:
            raise ValueError("Need at least 10 prompts for clustering")
        
        # Extract features
        print(f"Extracting features from {len(prompts)} prompts...")
        features = self.feature_extractor.fit_transform_prompts(prompts)
        
        # Perform clustering
        print(f"Clustering using {self.method}...")
        if self.method == 'dbscan':
            self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
            cluster_labels = self.model.fit_predict(features)
        else:  # kmeans
            n_clusters = min(10, len(prompts) // 20)
            self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
            cluster_labels = self.model.fit_predict(features)
        
        # Calculate metrics
        n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
        if n_clusters > 1:
            silhouette = silhouette_score(features, cluster_labels)
        else:
            silhouette = 0.0
        
        # Identify dangerous clusters
        dangerous_clusters = self._identify_dangerous_clusters(
            cluster_labels, is_harmful
        )
        
        print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
        print(f"Silhouette score: {silhouette:.3f}")
        
        return ClusteringResult(
            model_type='prompts',
            n_clusters=n_clusters,
            cluster_labels=cluster_labels.tolist(),
            cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
            silhouette_score=silhouette,
            dangerous_clusters=dangerous_clusters,
            metadata={'n_samples': len(prompts)}
        )
    
    def train_on_responses(self, entries: List[DatasetEntry]) -> ClusteringResult:
        """Train clustering model on responses."""
        # Extract responses and labels
        responses = [e.response for e in entries if e.response]
        is_harmful = [e.is_harmful for e in entries if e.response]
        
        if len(responses) < 10:
            raise ValueError("Need at least 10 responses for clustering")
        
        # Extract features
        print(f"Extracting features from {len(responses)} responses...")
        features = self.feature_extractor.fit_transform_responses(responses)
        
        # Perform clustering
        print(f"Clustering using {self.method}...")
        if self.method == 'dbscan':
            self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
            cluster_labels = self.model.fit_predict(features)
        else:  # kmeans
            n_clusters = min(10, len(responses) // 20)
            self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
            cluster_labels = self.model.fit_predict(features)
        
        # Calculate metrics
        n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
        if n_clusters > 1:
            silhouette = silhouette_score(features, cluster_labels)
        else:
            silhouette = 0.0
        
        # Identify dangerous clusters
        dangerous_clusters = self._identify_dangerous_clusters(
            cluster_labels, is_harmful
        )
        
        print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
        print(f"Silhouette score: {silhouette:.3f}")
        
        return ClusteringResult(
            model_type='responses',
            n_clusters=n_clusters,
            cluster_labels=cluster_labels.tolist(),
            cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
            silhouette_score=silhouette,
            dangerous_clusters=dangerous_clusters,
            metadata={'n_samples': len(responses)}
        )
    
    def train_on_pairs(self, entries: List[DatasetEntry]) -> ClusteringResult:
        """Train clustering model on prompt-response pairs."""
        # Extract pairs and labels
        pairs = [(e.prompt, e.response) for e in entries if e.prompt and e.response]
        is_harmful = [e.is_harmful for e in entries if e.prompt and e.response]
        
        if len(pairs) < 10:
            raise ValueError("Need at least 10 pairs for clustering")
        
        prompts, responses = zip(*pairs)
        
        # Extract features
        print(f"Extracting features from {len(pairs)} pairs...")
        features = self.feature_extractor.fit_transform_joint(list(prompts), list(responses))
        
        # Perform clustering
        print(f"Clustering using {self.method}...")
        if self.method == 'dbscan':
            self.model = DBSCAN(eps=0.5, min_samples=5, metric='cosine')
            cluster_labels = self.model.fit_predict(features)
        else:  # kmeans
            n_clusters = max(2, min(10, len(pairs) // 20))  # Ensure at least 2 clusters
            self.model = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
            cluster_labels = self.model.fit_predict(features)
        
        # Calculate metrics
        n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
        if n_clusters > 1:
            silhouette = silhouette_score(features, cluster_labels)
        else:
            silhouette = 0.0
        
        # Identify dangerous clusters
        dangerous_clusters = self._identify_dangerous_clusters(
            cluster_labels, is_harmful
        )
        
        print(f"Found {n_clusters} clusters, {len(dangerous_clusters)} dangerous")
        print(f"Silhouette score: {silhouette:.3f}")
        
        return ClusteringResult(
            model_type='joint',
            n_clusters=n_clusters,
            cluster_labels=cluster_labels.tolist(),
            cluster_centers=self.model.cluster_centers_ if hasattr(self.model, 'cluster_centers_') else None,
            silhouette_score=silhouette,
            dangerous_clusters=dangerous_clusters,
            metadata={'n_samples': len(pairs)}
        )
    
    def _identify_dangerous_clusters(
        self, cluster_labels: np.ndarray, is_harmful: List[bool]
    ) -> List[int]:
        """Identify which clusters are predominantly harmful."""
        dangerous = []
        
        unique_clusters = set(cluster_labels)
        unique_clusters.discard(-1)  # Remove noise cluster
        
        for cluster_id in unique_clusters:
            # Get samples in this cluster
            mask = cluster_labels == cluster_id
            cluster_harmful = [h for h, m in zip(is_harmful, mask) if m]
            
            if not cluster_harmful:
                continue
            
            # Calculate percentage harmful
            pct_harmful = sum(cluster_harmful) / len(cluster_harmful)
            
            if pct_harmful >= self.dangerous_cluster_threshold:
                dangerous.append(int(cluster_id))
                print(f"  Cluster {cluster_id}: {pct_harmful:.1%} harmful (DANGEROUS)")
            else:
                print(f"  Cluster {cluster_id}: {pct_harmful:.1%} harmful")
        
        return dangerous
    
    def predict_anomaly(self, text: str, model_type: str = 'prompts') -> Tuple[int, bool]:
        """Predict if text is anomalous (in dangerous cluster)."""
        if self.model is None:
            raise ValueError("Model not trained. Call train_on_* first.")
        
        # Extract features
        if model_type == 'prompts':
            features = self.feature_extractor.transform_prompts([text])
        elif model_type == 'responses':
            features = self.feature_extractor.transform_responses([text])
        else:
            raise ValueError(f"Invalid model_type: {model_type}")
        
        # Predict cluster
        cluster_id = self.model.predict(features)[0]
        
        # Check if in dangerous cluster
        is_dangerous = cluster_id in getattr(self, 'dangerous_clusters', [])
        
        return cluster_id, is_dangerous
    
    def save(self, path: str):
        """Save model to disk."""
        with open(path, 'wb') as f:
            pickle.dump({
                'method': self.method,
                'model': self.model,
                'feature_extractor': self.feature_extractor,
                'dangerous_cluster_threshold': self.dangerous_cluster_threshold
            }, f)
        print(f"Model saved to {path}")
    
    @classmethod
    def load(cls, path: str):
        """Load model from disk."""
        with open(path, 'rb') as f:
            data = pickle.load(f)
        
        instance = cls(method=data['method'])
        instance.model = data['model']
        instance.feature_extractor = data['feature_extractor']
        instance.dangerous_cluster_threshold = data['dangerous_cluster_threshold']
        
        print(f"Model loaded from {path}")
        return instance

# ============================================================================
# PIPELINE ORCHESTRATION
# ============================================================================

class ResearchPipeline:
    """Main pipeline for fetching data and training models."""
    
    def __init__(self, data_dir: str = "./data", models_dir: str = "./models"):
        self.data_dir = data_dir
        self.models_dir = models_dir
        os.makedirs(data_dir, exist_ok=True)
        os.makedirs(models_dir, exist_ok=True)
        
        self.datasets = {}
        self.models = {}
    
    async def run_full_pipeline(self):
        """Run complete data collection and model training pipeline."""
        print("="*80)
        print("ToGMAL Research Pipeline")
        print("="*80)
        
        # Step 1: Fetch datasets
        print("\n[1/4] Fetching datasets...")
        await self.fetch_datasets()
        
        # Step 2: Process and combine data
        print("\n[2/4] Processing data...")
        combined_data = self.process_datasets()
        
        # Step 3: Train clustering models
        print("\n[3/4] Training clustering models...")
        await self.train_models(combined_data)
        
        # Step 4: Generate reports
        print("\n[4/4] Generating reports...")
        self.generate_reports()
        
        print("\n" + "="*80)
        print("Pipeline complete!")
        print("="*80)
    
    async def fetch_datasets(self):
        """Fetch all available datasets."""
        async with DatasetFetcher(cache_dir=os.path.join(self.data_dir, "cache")) as fetcher:
            self.datasets = await fetcher.fetch_all_datasets()
        
        total_entries = sum(len(entries) for entries in self.datasets.values())
        print(f"\nFetched {len(self.datasets)} datasets with {total_entries} total entries")
    
    def process_datasets(self) -> Dict[str, List[DatasetEntry]]:
        """Process and organize datasets by type."""
        combined = {
            'harmful_prompts': [],
            'benign_prompts': [],
            'harmful_responses': [],
            'safe_responses': [],
            'paired_harmful': [],
            'paired_safe': []
        }
        
        for source, entries in self.datasets.items():
            for entry in entries:
                if entry.type in combined:
                    combined[entry.type].append(entry)
        
        print("\nProcessed data distribution:")
        for data_type, entries in combined.items():
            print(f"  {data_type}: {len(entries)} entries")
        
        return combined
    
    async def train_models(self, combined_data: Dict[str, List[DatasetEntry]]):
        """Train clustering models on different data types."""
        
        # Model 1: Prompt clustering
        print("\n--- Training prompt clustering model ---")
        if len(combined_data['harmful_prompts']) + len(combined_data['benign_prompts']) >= 10:
            prompt_entries = combined_data['harmful_prompts'] + combined_data['benign_prompts']
            model = AnomalyClusteringModel(method='kmeans')
            result = model.train_on_prompts(prompt_entries)
            
            model_path = os.path.join(self.models_dir, "prompt_clustering.pkl")
            model.save(model_path)
            
            self.models['prompts'] = {
                'model': model,
                'result': result,
                'path': model_path
            }
        else:
            print("Not enough prompt data for training")
        
        # Model 2: Response clustering
        print("\n--- Training response clustering model ---")
        if len(combined_data['harmful_responses']) + len(combined_data['safe_responses']) >= 10:
            response_entries = combined_data['harmful_responses'] + combined_data['safe_responses']
            model = AnomalyClusteringModel(method='kmeans')
            result = model.train_on_responses(response_entries)
            
            model_path = os.path.join(self.models_dir, "response_clustering.pkl")
            model.save(model_path)
            
            self.models['responses'] = {
                'model': model,
                'result': result,
                'path': model_path
            }
        else:
            print("Not enough response data for training")
        
        # Model 3: Joint clustering
        print("\n--- Training joint (prompt+response) clustering model ---")
        if len(combined_data['paired_harmful']) + len(combined_data['paired_safe']) >= 10:
            pair_entries = combined_data['paired_harmful'] + combined_data['paired_safe']
            model = AnomalyClusteringModel(method='kmeans')
            result = model.train_on_pairs(pair_entries)
            
            model_path = os.path.join(self.models_dir, "joint_clustering.pkl")
            model.save(model_path)
            
            self.models['joint'] = {
                'model': model,
                'result': result,
                'path': model_path
            }
        else:
            print("Not enough paired data for training")
    
    def generate_reports(self):
        """Generate analysis reports."""
        report_path = os.path.join(self.data_dir, "training_report.json")
        
        report = {
            'timestamp': datetime.now().isoformat(),
            'datasets': {
                source: len(entries) 
                for source, entries in self.datasets.items()
            },
            'models': {}
        }
        
        for model_type, model_data in self.models.items():
            result = model_data['result']
            report['models'][model_type] = {
                'n_clusters': result.n_clusters,
                'silhouette_score': result.silhouette_score,
                'dangerous_clusters': result.dangerous_clusters,
                'model_path': model_data['path']
            }
        
        with open(report_path, 'w') as f:
            json.dump(report, f, indent=2)
        
        print(f"\nReport saved to: {report_path}")
        print("\nModel Summary:")
        for model_type, data in report['models'].items():
            print(f"\n  {model_type.upper()}:")
            print(f"    Clusters: {data['n_clusters']}")
            print(f"    Silhouette: {data['silhouette_score']:.3f}")
            print(f"    Dangerous: {len(data['dangerous_clusters'])} clusters")
            print(f"    Path: {data['model_path']}")

# ============================================================================
# MAIN EXECUTION
# ============================================================================

async def main():
    """Main entry point for research pipeline."""
    import sys
    
    if len(sys.argv) > 1 and sys.argv[1] == '--help':
        print("""
ToGMAL Research Data Pipeline

Usage:
  python research_pipeline.py [options]

Options:
  --help              Show this help message
  --data-dir PATH     Directory for data storage (default: ./data)
  --models-dir PATH   Directory for model storage (default: ./models)
  --fetch-only        Only fetch datasets, don't train models
  --train-only        Only train models, use cached data

Examples:
  # Run full pipeline
  python research_pipeline.py
  
  # Just fetch data
  python research_pipeline.py --fetch-only
  
  # Use custom directories
  python research_pipeline.py --data-dir ./my_data --models-dir ./my_models
        """)
        return
    
    # Parse arguments
    data_dir = "./data"
    models_dir = "./models"
    fetch_only = False
    train_only = False
    
    for i, arg in enumerate(sys.argv[1:]):
        if arg == '--data-dir' and i+2 < len(sys.argv):
            data_dir = sys.argv[i+2]
        elif arg == '--models-dir' and i+2 < len(sys.argv):
            models_dir = sys.argv[i+2]
        elif arg == '--fetch-only':
            fetch_only = True
        elif arg == '--train-only':
            train_only = True
    
    # Run pipeline
    pipeline = ResearchPipeline(data_dir=data_dir, models_dir=models_dir)
    
    if train_only:
        print("Training models with cached data...")
        combined_data = pipeline.process_datasets()
        await pipeline.train_models(combined_data)
        pipeline.generate_reports()
    elif fetch_only:
        print("Fetching datasets only...")
        await pipeline.fetch_datasets()
    else:
        await pipeline.run_full_pipeline()

if __name__ == "__main__":
    asyncio.run(main())