File size: 9,629 Bytes
f9b1ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
ToGMAL + ML Integration

This module integrates the clustering-based anomaly detection models
with the ToGMAL MCP server, enabling ML-enhanced safety detection.
"""

import os
import pickle
from typing import Dict, Any, Tuple, Optional, TYPE_CHECKING
if TYPE_CHECKING:
    import numpy as np
try:
    import numpy as np
except Exception as e:
    raise RuntimeError("Required ML dependencies missing. Please install: numpy, scikit-learn") from e

# ============================================================================
# ML-ENHANCED DETECTION
# ============================================================================

class MLEnhancedDetector:
    """
    Wrapper for clustering models that can be used alongside heuristic detection.
    """
    
    def __init__(self, models_dir: str = "./models"):
        self.models_dir = models_dir
        self.prompt_model = None
        self.response_model = None
        self.joint_model = None
        self._loaded = False
    
    def load_models(self):
        """Load all available trained models."""
        try:
            # Load prompt clustering model
            prompt_path = os.path.join(self.models_dir, "prompt_clustering.pkl")
            if os.path.exists(prompt_path):
                with open(prompt_path, 'rb') as f:
                    data = pickle.load(f)
                    self.prompt_model = {
                        'model': data['model'],
                        'feature_extractor': data['feature_extractor'],
                        'dangerous_clusters': getattr(data.get('model'), 'dangerous_clusters_', [])
                    }
                print(f"✓ Loaded prompt clustering model from {prompt_path}")
            
            # Load joint clustering model
            joint_path = os.path.join(self.models_dir, "joint_clustering.pkl")
            if os.path.exists(joint_path):
                with open(joint_path, 'rb') as f:
                    data = pickle.load(f)
                    self.joint_model = {
                        'model': data['model'],
                        'feature_extractor': data['feature_extractor'],
                        'dangerous_clusters': getattr(data.get('model'), 'dangerous_clusters_', [])
                    }
                print(f"✓ Loaded joint clustering model from {joint_path}")
            
            self._loaded = True
            return True
            
        except Exception as e:
            print(f"✗ Failed to load models: {e}")
            return False
    
    def analyze_prompt_ml(self, prompt: str) -> Dict[str, Any]:
        """
        Analyze a prompt using ML clustering model.
        
        Returns:
            dict with keys:
                - detected: bool
                - cluster_id: int
                - is_dangerous_cluster: bool
                - confidence: float
                - method: str = 'ml_clustering'
        """
        if not self._loaded or self.prompt_model is None:
            return {
                'detected': False,
                'cluster_id': -1,
                'is_dangerous_cluster': False,
                'confidence': 0.0,
                'method': 'ml_clustering_unavailable'
            }
        
        try:
            # Extract features
            feature_extractor = self.prompt_model['feature_extractor']
            features = feature_extractor.transform_prompts([prompt])
            
            # Predict cluster
            model = self.prompt_model['model']
            cluster_id = model.predict(features)[0]
            
            # Check if dangerous
            # Note: We need to recover dangerous clusters from training
            # For now, use distance to cluster center as proxy
            if hasattr(model, 'cluster_centers_'):
                distances = np.linalg.norm(
                    model.cluster_centers_ - features, axis=1
                )
                closest_dangerous = min(
                    [d for i, d in enumerate(distances) if i in [1, 2]],  # From training: clusters 1,2 are dangerous
                    default=float('inf')
                )
                is_dangerous = closest_dangerous < 1.0  # Threshold
                confidence = 1.0 - min(closest_dangerous / 2.0, 1.0)
            else:
                is_dangerous = False
                confidence = 0.0
            
            return {
                'detected': is_dangerous,
                'cluster_id': int(cluster_id),
                'is_dangerous_cluster': is_dangerous,
                'confidence': float(confidence),
                'method': 'ml_clustering'
            }
            
        except Exception as e:
            print(f"ML analysis error: {e}")
            return {
                'detected': False,
                'cluster_id': -1,
                'is_dangerous_cluster': False,
                'confidence': 0.0,
                'method': 'ml_clustering_error',
                'error': str(e)
            }
    
    def analyze_pair_ml(self, prompt: str, response: str) -> Dict[str, Any]:
        """
        Analyze a prompt-response pair using ML clustering model.
        """
        if not self._loaded or self.joint_model is None:
            return {
                'detected': False,
                'cluster_id': -1,
                'is_dangerous_cluster': False,
                'confidence': 0.0,
                'method': 'ml_clustering_unavailable'
            }
        
        try:
            # Extract features from combined text
            combined = f"{prompt} [SEP] {response}"
            feature_extractor = self.joint_model['feature_extractor']
            features = feature_extractor.prompt_vectorizer.transform([combined]).toarray()
            features = feature_extractor.scaler.transform(features)
            
            # Predict cluster
            model = self.joint_model['model']
            cluster_id = model.predict(features)[0]
            
            # Check if dangerous (cluster 0 was dangerous in training)
            if hasattr(model, 'cluster_centers_'):
                distances = np.linalg.norm(
                    model.cluster_centers_ - features, axis=1
                )
                # Cluster 0 is dangerous from training
                closest_dangerous = distances[0]
                is_dangerous = closest_dangerous < 1.0
                confidence = 1.0 - min(closest_dangerous / 2.0, 1.0)
            else:
                is_dangerous = False
                confidence = 0.0
            
            return {
                'detected': is_dangerous,
                'cluster_id': int(cluster_id),
                'is_dangerous_cluster': is_dangerous,
                'confidence': float(confidence),
                'method': 'ml_clustering'
            }
            
        except Exception as e:
            print(f"ML analysis error: {e}")
            return {
                'detected': False,
                'cluster_id': -1,
                'is_dangerous_cluster': False,
                'confidence': 0.0,
                'method': 'ml_clustering_error',
                'error': str(e)
            }

# ============================================================================
# HYBRID DETECTION (Heuristics + ML)
# ============================================================================

def combine_detections(
    heuristic_results: Dict[str, Any],
    ml_results: Dict[str, Any],
    weight_heuristic: float = 0.7,
    weight_ml: float = 0.3
) -> Dict[str, Any]:
    """
    Combine heuristic and ML detection results.
    
    Args:
        heuristic_results: Results from heuristic detection (ToGMAL)
        ml_results: Results from ML clustering
        weight_heuristic: Weight for heuristic confidence (0-1)
        weight_ml: Weight for ML confidence (0-1)
    
    Returns:
        Combined detection result with ensemble confidence
    """
    # Normalize weights
    total_weight = weight_heuristic + weight_ml
    weight_heuristic /= total_weight
    weight_ml /= total_weight
    
    # Extract confidences
    heuristic_conf = heuristic_results.get('confidence', 0.0)
    ml_conf = ml_results.get('confidence', 0.0)
    
    # Combine confidences
    combined_confidence = (
        weight_heuristic * heuristic_conf +
        weight_ml * ml_conf
    )
    
    # Logical OR for detection (if either detects, flag it)
    combined_detected = (
        heuristic_results.get('detected', False) or
        ml_results.get('detected', False)
    )
    
    # Aggregate categories
    combined_categories = list(set(
        heuristic_results.get('categories', []) +
        ([ml_results.get('method', '')] if ml_results.get('detected') else [])
    ))
    
    return {
        'detected': combined_detected,
        'confidence': combined_confidence,
        'categories': combined_categories,
        'heuristic_confidence': heuristic_conf,
        'ml_confidence': ml_conf,
        'ml_cluster_id': ml_results.get('cluster_id', -1),
        'method': 'hybrid_ensemble'
    }

# ============================================================================
# INTEGRATION WITH ToGMAL
# ============================================================================

# Global ML detector instance (lazy loaded)
_ml_detector: Optional[MLEnhancedDetector] = None

def get_ml_detector(models_dir: str = "./models") -> MLEnhancedDetector:
    """Get or create ML detector instance."""
    global _ml_detector
    if _ml_detector is None:
        _ml_detector = MLEnhancedDetector(models_dir)
        _ml_detector.load_models()
    return _ml_detector