File size: 24,628 Bytes
5fd9547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#!/usr/bin/env python3
"""
ToGMAL Combined Demo - Difficulty Analyzer + Chat Interface
===========================================================

Tabbed interface combining:
1. Difficulty Analyzer - Direct vector DB analysis
2. Chat Interface - LLM with MCP tool calling

Perfect for demos and VC pitches!
"""

import gradio as gr
import json
import os
import re
from pathlib import Path
from typing import List, Dict, Tuple, Optional
from benchmark_vector_db import BenchmarkVectorDB
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize the vector database (shared by both tabs)
db_path = Path("./data/benchmark_vector_db")
db = None

def get_db():
    """Lazy load the vector database."""
    global db
    if db is None:
        try:
            logger.info("Initializing BenchmarkVectorDB...")
            db = BenchmarkVectorDB(
                db_path=db_path,
                embedding_model="all-MiniLM-L6-v2"
            )
            logger.info("βœ“ BenchmarkVectorDB initialized successfully")
        except Exception as e:
            logger.error(f"Failed to initialize BenchmarkVectorDB: {e}")
            raise
    return db

# Build database if needed (first launch)
try:
    db = get_db()
    current_count = db.collection.count()
    
    if False and current_count == 0:
        logger.info("Database is empty - building initial 5K sample...")
        from datasets import load_dataset
        from benchmark_vector_db import BenchmarkQuestion
        import random
        
        test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
        total_questions = 0  # disabled in demo
        
        if total_questions > 5000:
            indices = random.sample(range(total_questions), 5000)
            pass  # selection disabled in demo
        
        all_questions = []
        for idx, item in enumerate(test_dataset):
            question = BenchmarkQuestion(
                question_id=f"mmlu_pro_test_{idx}",
                source_benchmark="MMLU_Pro",
                domain=item.get('category', 'unknown').lower(),
                question_text=item['question'],
                correct_answer=item['answer'],
                choices=item.get('options', []),
                success_rate=0.45,
                difficulty_score=0.55,
                difficulty_label="Hard",
                num_models_tested=0
            )
            all_questions.append(question)
        
        batch_size = 1000
        for i in range(0, len(all_questions), batch_size):
            batch = all_questions[i:i + batch_size]
            db.index_questions(batch)
        
        logger.info(f"βœ“ Database build complete! Indexed {len(all_questions)} questions")
    else:
        logger.info(f"βœ“ Loaded existing database with {current_count:,} questions")
except Exception as e:
    logger.warning(f"Database initialization deferred: {e}")
    db = None

# ============================================================================
# TAB 1: DIFFICULTY ANALYZER
# ============================================================================

def analyze_prompt_difficulty(prompt: str, k: int = 5) -> str:
    """Analyze a prompt and return difficulty assessment."""
    if not prompt.strip():
        return "Please enter a prompt to analyze."
    
    try:
        db = get_db()
        result = db.query_similar_questions(prompt, k=k)
        
        output = []
        output.append(f"## 🎯 Difficulty Assessment\n")
        output.append(f"**Risk Level**: {result['risk_level']}")
        output.append(f"**Success Rate**: {result['weighted_success_rate']:.1%}")
        output.append(f"**Avg Similarity**: {result['avg_similarity']:.3f}")
        output.append("")
        output.append(f"**Recommendation**: {result['recommendation']}")
        output.append("")
        output.append(f"## πŸ” Similar Benchmark Questions\n")
        
        for i, q in enumerate(result['similar_questions'], 1):
            output.append(f"{i}. **{q['question_text'][:100]}...**")
            output.append(f"   - Source: {q['source']} ({q['domain']})")
            output.append(f"   - Success Rate: {q['success_rate']:.1%}")
            output.append(f"   - Similarity: {q['similarity']:.3f}")
            output.append("")
        
        total_questions = db.collection.count()
        output.append(f"*Analyzed using {k} most similar questions from {total_questions:,} benchmark questions*")
        
        return "\n".join(output)
    except Exception as e:
        return f"Error analyzing prompt: {str(e)}"

# ==========================================================================
# Database status and expansion helpers
# ==========================================================================

def get_database_info() -> str:
    global db
    if db is None:
        return """### ⚠️ Database Not Initialized

**Status:** Waiting for initialization

The vector database is not yet ready. It will initialize on first use.
"""
    try:
        db = get_db()
        current_count = db.collection.count()
        total_available = 32719
        remaining = max(0, total_available - current_count)
        progress_pct = (current_count / total_available * 100) if total_available > 0 else 0
        info = "### πŸ“Š Database Status\n\n"
        info += f"**Current Size:** {current_count:,} questions\n"
        info += f"**Total Available:** {total_available:,} questions\n"
        info += f"**Progress:** {progress_pct:.1f}% complete\n"
        info += f"**Remaining:** {remaining:,} questions\n\n"
        if remaining > 0:
            clicks_needed = (remaining + 4999) // 5000
            info += "πŸ’‘ Click 'Expand Database' to add 5,000 more questions\n"
            info += f"πŸ“ˆ ~{clicks_needed} more clicks to reach full 32K+ dataset"
        else:
            info += "πŸŽ‰ Database is complete with all available questions!"
        return info
    except Exception as e:
        return f"Error getting database info: {str(e)}"


def expand_database(batch_size: int = 5000) -> str:
    global db
    try:
        db = get_db()
        from datasets import load_dataset
        from benchmark_vector_db import BenchmarkQuestion
        import random
        
        current_count = db.collection.count()
        total_available = 32719
        if current_count >= total_available:
            return f"βœ… Database complete at {current_count:,}/{total_available:,}."
        
        # Sample a batch from MMLU-Pro test for incremental expansion
        mmlu_pro_test = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
        total_questions = 0  # disabled in demo
        indices = list(range(total_questions))
        random.shuffle(indices)
        indices = indices[:batch_size]
        batch = []  # selection disabled in demo
        
        new_questions = []
        for idx, item in enumerate(batch):
            q = BenchmarkQuestion(
                question_id=f"mmlu_pro_expand_{current_count}_{idx}",
                source_benchmark="MMLU_Pro",
                domain=item.get('category', 'unknown').lower(),
                question_text=item['question'],
                correct_answer=item['answer'],
                choices=item.get('options', []),
                success_rate=0.45,
                difficulty_score=0.55,
                difficulty_label="Hard",
                num_models_tested=0
            )
            new_questions.append(q)
        
        db.index_questions(new_questions)
        new_count = db.collection.count()
        remaining = max(0, total_available - new_count)
        result = f"βœ… Added {len(new_questions)} questions.\n\n"
        result += f"**Total:** {new_count:,}/{total_available:,}\n"
        result += f"**Remaining:** {remaining:,}\n"
        if remaining > 0:
            result += f"πŸ’‘ Click again to add up to {min(batch_size, remaining):,} more."
        else:
            result += "πŸŽ‰ Database is now complete!"
        return result
    except Exception as e:
        logger.error(f"Expansion failed: {e}")
        return f"❌ Error expanding database: {str(e)}"

# ============================================================================
# TAB 2: CHAT INTERFACE WITH MCP TOOLS
# ============================================================================

def tool_check_prompt_difficulty(prompt: str, k: int = 5) -> Dict:
    """MCP Tool: Analyze prompt difficulty."""
    try:
        db = get_db()
        result = db.query_similar_questions(prompt, k=k)
        
        return {
            "risk_level": result['risk_level'],
            "success_rate": f"{result['weighted_success_rate']:.1%}",
            "avg_similarity": f"{result['avg_similarity']:.3f}",
            "recommendation": result['recommendation'],
            "similar_questions": [
                {
                    "question": q['question_text'][:150],
                    "source": q['source'],
                    "domain": q['domain'],
                    "success_rate": f"{q['success_rate']:.1%}",
                    "similarity": f"{q['similarity']:.3f}"
                }
                for q in result['similar_questions'][:3]
            ]
        }
    except Exception as e:
        return {"error": f"Analysis failed: {str(e)}"}

def tool_analyze_prompt_safety(prompt: str) -> Dict:
    """MCP Tool: Analyze prompt for safety issues."""
    issues = []
    risk_level = "low"
    
    dangerous_patterns = [
        r'\brm\s+-rf\b',
        r'\bdelete\s+all\b',
        r'\bformat\s+.*drive\b',
        r'\bdrop\s+database\b'
    ]
    
    for pattern in dangerous_patterns:
        if re.search(pattern, prompt, re.IGNORECASE):
            issues.append("Detected potentially dangerous file operation")
            risk_level = "high"
            break
    
    medical_keywords = ['diagnose', 'treatment', 'medication', 'symptoms', 'cure', 'disease']
    if any(keyword in prompt.lower() for keyword in medical_keywords):
        issues.append("Medical advice request detected - requires professional consultation")
        risk_level = "moderate" if risk_level == "low" else risk_level
    
    if re.search(r'\b(build|create|write)\s+.*\b(\d{3,})\s+(lines|functions|classes)', prompt, re.IGNORECASE):
        issues.append("Large-scale coding request - may exceed LLM capabilities")
        risk_level = "moderate" if risk_level == "low" else risk_level
    
    return {
        "risk_level": risk_level,
        "issues_found": len(issues),
        "issues": issues if issues else ["No significant safety concerns detected"],
        "recommendation": "Proceed with caution" if issues else "Prompt appears safe"
    }

def call_llm_with_tools(
    messages: List[Dict[str, str]],
    available_tools: List[Dict],
    model: str = "mistralai/Mistral-7B-Instruct-v0.2"
) -> Tuple[str, Optional[Dict]]:
    """Call LLM with tool calling capability."""
    try:
        from huggingface_hub import InferenceClient
        client = InferenceClient()
        
        system_msg = """You are ToGMAL Assistant, an AI that helps analyze prompts for difficulty and safety.

You have access to these tools:
1. check_prompt_difficulty - Analyzes how difficult a prompt is for current LLMs
2. analyze_prompt_safety - Checks for safety issues in prompts

When a user asks about prompt difficulty, safety, or capabilities, use the appropriate tool.
To call a tool, respond with: TOOL_CALL: tool_name(arg1="value1", arg2="value2")

After a tool is called, you will receive: TOOL_RESULT: name=<tool_name> data=<json>
Use TOOL_RESULT to provide a helpful, comprehensive response to the user."""
        
        conversation = system_msg + "\n\n"
        for msg in messages:
            role = msg['role']
            content = msg['content']
            if role == 'user':
                conversation += f"User: {content}\n"
            elif role == 'assistant':
                conversation += f"Assistant: {content}\n"
            elif role == 'system':
                conversation += f"System: {content}\n"
        
        conversation += "Assistant: "
        
        response = client.text_generation(
            conversation,
            model=model,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.95,
            do_sample=True
        )
        
        response_text = response.strip()
        tool_call = None
        
        if "TOOL_CALL:" in response_text:
            match = re.search(r'TOOL_CALL:\s*(\w+)\((.*?)\)', response_text)
            if match:
                tool_name = match.group(1)
                args_str = match.group(2)
                args = {}
                for arg in args_str.split(','):
                    if '=' in arg:
                        key, val = arg.split('=', 1)
                        key = key.strip()
                        val = val.strip().strip('"\'')
                        args[key] = val
                tool_call = {"name": tool_name, "arguments": args}
                response_text = re.sub(r'TOOL_CALL:.*?\)', '', response_text).strip()
        
        return response_text, tool_call
    except Exception as e:
        logger.error(f"LLM call failed: {e}")
        return fallback_llm(messages, available_tools)

def fallback_llm(messages: List[Dict[str, str]], available_tools: List[Dict]) -> Tuple[str, Optional[Dict]]:
    """Fallback when HF API unavailable."""
    last_message = messages[-1]['content'].lower() if messages else ""
    
    # Safety intent first
    if any(word in last_message for word in ['safe', 'safety', 'dangerous', 'risk']):
        return "", {"name": "analyze_prompt_safety", "arguments": {"prompt": messages[-1]['content']}}
    
    # Difficulty intent (expanded triggers)
    if any(word in last_message for word in ['difficult', 'difficulty', 'hard', 'easy', 'challenging', 'analyze', 'analysis', 'assess', 'check']):
        return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
    
    # Default: run difficulty analysis on any non-empty message
    if last_message.strip():
        return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
    
    return """I'm ToGMAL Assistant. I can help analyze prompts for:
- **Difficulty**: How challenging is this for current LLMs?
- **Safety**: Are there any safety concerns?

Try asking me to analyze a prompt!""", None

AVAILABLE_TOOLS = [
    {
        "name": "check_prompt_difficulty",
        "description": "Analyzes how difficult a prompt is for current LLMs",
        "parameters": {"prompt": "The prompt to analyze", "k": "Number of similar questions"}
    },
    {
        "name": "analyze_prompt_safety",
        "description": "Checks for safety issues in prompts",
        "parameters": {"prompt": "The prompt to analyze"}
    }
]

def execute_tool(tool_name: str, arguments: Dict) -> Dict:
    """Execute a tool and return results."""
    if tool_name == "check_prompt_difficulty":
        prompt = arguments.get("prompt", "")
        try:
            k = int(arguments.get("k", 5))
        except Exception:
            k = 5
        k = max(1, min(100, k))
        return tool_check_prompt_difficulty(prompt, k)
    elif tool_name == "analyze_prompt_safety":
        return tool_analyze_prompt_safety(arguments.get("prompt", ""))
    else:
        return {"error": f"Unknown tool: {tool_name}"}

def format_tool_result(tool_name: str, result: Dict) -> str:
    """Format tool result as natural language."""
    if tool_name == "check_prompt_difficulty":
        if "error" in result:
            return f"Sorry, I couldn't analyze the difficulty: {result['error']}"
        return f"""Based on my analysis of similar benchmark questions:

**Difficulty Level:** {result['risk_level'].upper()}
**Success Rate:** {result['success_rate']}
**Similarity:** {result['avg_similarity']}

**Recommendation:** {result['recommendation']}

**Similar questions:**
{chr(10).join([f"β€’ {q['question'][:100]}... (Success: {q['success_rate']})" for q in result['similar_questions'][:2]])}
"""
    elif tool_name == "analyze_prompt_safety":
        if "error" in result:
            return f"Sorry, I couldn't analyze safety: {result['error']}"
        issues = "\n".join([f"β€’ {issue}" for issue in result['issues']])
        return f"""**Safety Analysis:**

**Risk Level:** {result['risk_level'].upper()}
**Issues Found:** {result['issues_found']}

{issues}

**Recommendation:** {result['recommendation']}
"""
    return json.dumps(result, indent=2)

def chat(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
    """Process chat message with tool calling."""
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    messages.append({"role": "user", "content": message})
    
    response_text, tool_call = call_llm_with_tools(messages, AVAILABLE_TOOLS)
    
    tool_status = ""
    
    if tool_call:
        tool_name = tool_call['name']
        tool_args = tool_call['arguments']
        
        tool_status = f"πŸ› οΈ **Calling tool:** `{tool_name}`\n**Arguments:** {json.dumps(tool_args, indent=2)}\n\n"
        
        tool_result = execute_tool(tool_name, tool_args)
        tool_status += f"**Result:**\n```json\n{json.dumps(tool_result, indent=2)}\n```\n\n"
        
        # Two-step: add TOOL_RESULT and call LLM again
        messages.append({
            "role": "system",
            "content": f"TOOL_RESULT: name={tool_name} data={json.dumps(tool_result)}"
        })
        final_response, _ = call_llm_with_tools(messages, AVAILABLE_TOOLS)
        if final_response:
            response_text = final_response
        else:
            response_text = format_tool_result(tool_name, tool_result)
    
    # If no tool was called and no response, provide helpful message
    if not response_text:
        response_text = """I'm ToGMAL Assistant. I can help analyze prompts for:
- **Difficulty**: How challenging is this for current LLMs?
- **Safety**: Are there any safety concerns?

Try asking me to analyze a prompt!"""
    
    history.append((message, response_text))
    return history, tool_status

# ============================================================================
# GRADIO INTERFACE - TABBED LAYOUT
# ============================================================================

with gr.Blocks(title="ToGMAL - Difficulty Analyzer + Chat", css="""
    .tab-nav button { font-size: 16px !important; padding: 12px 24px !important; }
    .gradio-container { max-width: 1200px !important; }
""") as demo:
    
    gr.Markdown("# 🧠 ToGMAL - Intelligent LLM Analysis Platform")
    gr.Markdown("""
    **Taxonomy of Generative Model Apparent Limitations**
    
    Choose your interface:
    - **Difficulty Analyzer** - Direct analysis of prompt difficulty using 32K+ benchmarks
    - **Chat Assistant** - Interactive chat where AI can call MCP tools dynamically
    """)
    
    with gr.Tabs():
        # TAB 1: DIFFICULTY ANALYZER
        with gr.Tab("πŸ“Š Difficulty Analyzer"):
            gr.Markdown("### Analyze Prompt Difficulty")
            gr.Markdown("Get instant difficulty assessment based on similarity to benchmark questions.")
            with gr.Accordion("πŸ“š Database Management", open=False):
                db_info = gr.Markdown(get_database_info())
                with gr.Row():
                    expand_btn = gr.Button("πŸš€ Expand Database (+5K)")
                    refresh_btn = gr.Button("πŸ”„ Refresh Stats")
                expand_output = gr.Markdown()
                expand_btn.click(fn=lambda: "Expansion temporarily disabled in this demo. Use the 'ToGMAL Prompt Difficulty Analyzer' app for full control.", inputs=[], outputs=expand_output)
                refresh_btn.click(fn=get_database_info, inputs=[], outputs=db_info)
            
            with gr.Row():
                with gr.Column():
                    analyzer_prompt = gr.Textbox(
                        label="Enter your prompt",
                        placeholder="e.g., Calculate the quantum correction to the partition function...",
                        lines=3
                    )
                    analyzer_k = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=5,
                        step=1,
                        label="Number of similar questions to show"
                    )
                    analyzer_btn = gr.Button("Analyze Difficulty", variant="primary")
                
                with gr.Column():
                    analyzer_output = gr.Markdown(label="Analysis Results")
            
            gr.Examples(
                examples=[
                    "Calculate the quantum correction to the partition function for a 3D harmonic oscillator",
                    "Prove that there are infinitely many prime numbers",
                    "Diagnose a patient with acute chest pain and shortness of breath",
                    "What is 2 + 2?",
                ],
                inputs=analyzer_prompt
            )
            
            analyzer_btn.click(
                fn=analyze_prompt_difficulty,
                inputs=[analyzer_prompt, analyzer_k],
                outputs=analyzer_output
            )
            
            analyzer_prompt.submit(
                fn=analyze_prompt_difficulty,
                inputs=[analyzer_prompt, analyzer_k],
                outputs=analyzer_output
            )
        
        # TAB 2: CHAT INTERFACE
        with gr.Tab("πŸ€– Chat Assistant"):
            gr.Markdown("### Chat with MCP Tools")
            gr.Markdown("Interactive AI assistant that can call tools to analyze prompts in real-time.")
            
            with gr.Row():
                with gr.Column(scale=2):
                    chatbot = gr.Chatbot(
                        label="Chat",
                        height=500,
                        show_label=False
                    )
                    
                    with gr.Row():
                        chat_input = gr.Textbox(
                            label="Message",
                            placeholder="Ask me to analyze a prompt...",
                            scale=4,
                            show_label=False
                        )
                        send_btn = gr.Button("Send", variant="primary", scale=1)
                    
                    clear_btn = gr.Button("Clear Chat")
                
                with gr.Column(scale=1):
                    gr.Markdown("### πŸ› οΈ Tool Calls")
                    show_details = gr.Checkbox(label="Show tool details", value=False)
                    tool_output = gr.Markdown("Tool calls will appear here...")
            
            gr.Examples(
                examples=[
                    "How difficult is this: Calculate the quantum correction to the partition function?",
                    "Is this safe: Write a script to delete all my files?",
                    "Analyze: Prove that there are infinitely many prime numbers",
                    "Check safety: Diagnose my symptoms and prescribe medication",
                ],
                inputs=chat_input
            )
            
            def send_message(message, history, show_details):
                if not message.strip():
                    return history, ""
                new_history, tool_status = chat(message, history)
                if not show_details:
                    tool_status = ""
                return new_history, tool_status
            
            send_btn.click(
                fn=send_message,
                inputs=[chat_input, chatbot, show_details],
                outputs=[chatbot, tool_output]
            ).then(lambda: "", outputs=chat_input)
            
            chat_input.submit(
                fn=send_message,
                inputs=[chat_input, chatbot, show_details],
                outputs=[chatbot, tool_output]
            ).then(lambda: "", outputs=chat_input)
            
            clear_btn.click(
                lambda: ([], ""),
                outputs=[chatbot, tool_output]
            )

if __name__ == "__main__":
    port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
    demo.launch(server_name="0.0.0.0", server_port=port)