Spaces:
Configuration error
Configuration error
File size: 24,628 Bytes
5fd9547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
#!/usr/bin/env python3
"""
ToGMAL Combined Demo - Difficulty Analyzer + Chat Interface
===========================================================
Tabbed interface combining:
1. Difficulty Analyzer - Direct vector DB analysis
2. Chat Interface - LLM with MCP tool calling
Perfect for demos and VC pitches!
"""
import gradio as gr
import json
import os
import re
from pathlib import Path
from typing import List, Dict, Tuple, Optional
from benchmark_vector_db import BenchmarkVectorDB
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize the vector database (shared by both tabs)
db_path = Path("./data/benchmark_vector_db")
db = None
def get_db():
"""Lazy load the vector database."""
global db
if db is None:
try:
logger.info("Initializing BenchmarkVectorDB...")
db = BenchmarkVectorDB(
db_path=db_path,
embedding_model="all-MiniLM-L6-v2"
)
logger.info("β BenchmarkVectorDB initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize BenchmarkVectorDB: {e}")
raise
return db
# Build database if needed (first launch)
try:
db = get_db()
current_count = db.collection.count()
if False and current_count == 0:
logger.info("Database is empty - building initial 5K sample...")
from datasets import load_dataset
from benchmark_vector_db import BenchmarkQuestion
import random
test_dataset = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
total_questions = 0 # disabled in demo
if total_questions > 5000:
indices = random.sample(range(total_questions), 5000)
pass # selection disabled in demo
all_questions = []
for idx, item in enumerate(test_dataset):
question = BenchmarkQuestion(
question_id=f"mmlu_pro_test_{idx}",
source_benchmark="MMLU_Pro",
domain=item.get('category', 'unknown').lower(),
question_text=item['question'],
correct_answer=item['answer'],
choices=item.get('options', []),
success_rate=0.45,
difficulty_score=0.55,
difficulty_label="Hard",
num_models_tested=0
)
all_questions.append(question)
batch_size = 1000
for i in range(0, len(all_questions), batch_size):
batch = all_questions[i:i + batch_size]
db.index_questions(batch)
logger.info(f"β Database build complete! Indexed {len(all_questions)} questions")
else:
logger.info(f"β Loaded existing database with {current_count:,} questions")
except Exception as e:
logger.warning(f"Database initialization deferred: {e}")
db = None
# ============================================================================
# TAB 1: DIFFICULTY ANALYZER
# ============================================================================
def analyze_prompt_difficulty(prompt: str, k: int = 5) -> str:
"""Analyze a prompt and return difficulty assessment."""
if not prompt.strip():
return "Please enter a prompt to analyze."
try:
db = get_db()
result = db.query_similar_questions(prompt, k=k)
output = []
output.append(f"## π― Difficulty Assessment\n")
output.append(f"**Risk Level**: {result['risk_level']}")
output.append(f"**Success Rate**: {result['weighted_success_rate']:.1%}")
output.append(f"**Avg Similarity**: {result['avg_similarity']:.3f}")
output.append("")
output.append(f"**Recommendation**: {result['recommendation']}")
output.append("")
output.append(f"## π Similar Benchmark Questions\n")
for i, q in enumerate(result['similar_questions'], 1):
output.append(f"{i}. **{q['question_text'][:100]}...**")
output.append(f" - Source: {q['source']} ({q['domain']})")
output.append(f" - Success Rate: {q['success_rate']:.1%}")
output.append(f" - Similarity: {q['similarity']:.3f}")
output.append("")
total_questions = db.collection.count()
output.append(f"*Analyzed using {k} most similar questions from {total_questions:,} benchmark questions*")
return "\n".join(output)
except Exception as e:
return f"Error analyzing prompt: {str(e)}"
# ==========================================================================
# Database status and expansion helpers
# ==========================================================================
def get_database_info() -> str:
global db
if db is None:
return """### β οΈ Database Not Initialized
**Status:** Waiting for initialization
The vector database is not yet ready. It will initialize on first use.
"""
try:
db = get_db()
current_count = db.collection.count()
total_available = 32719
remaining = max(0, total_available - current_count)
progress_pct = (current_count / total_available * 100) if total_available > 0 else 0
info = "### π Database Status\n\n"
info += f"**Current Size:** {current_count:,} questions\n"
info += f"**Total Available:** {total_available:,} questions\n"
info += f"**Progress:** {progress_pct:.1f}% complete\n"
info += f"**Remaining:** {remaining:,} questions\n\n"
if remaining > 0:
clicks_needed = (remaining + 4999) // 5000
info += "π‘ Click 'Expand Database' to add 5,000 more questions\n"
info += f"π ~{clicks_needed} more clicks to reach full 32K+ dataset"
else:
info += "π Database is complete with all available questions!"
return info
except Exception as e:
return f"Error getting database info: {str(e)}"
def expand_database(batch_size: int = 5000) -> str:
global db
try:
db = get_db()
from datasets import load_dataset
from benchmark_vector_db import BenchmarkQuestion
import random
current_count = db.collection.count()
total_available = 32719
if current_count >= total_available:
return f"β
Database complete at {current_count:,}/{total_available:,}."
# Sample a batch from MMLU-Pro test for incremental expansion
mmlu_pro_test = load_dataset("TIGER-Lab/MMLU-Pro", split="test")
total_questions = 0 # disabled in demo
indices = list(range(total_questions))
random.shuffle(indices)
indices = indices[:batch_size]
batch = [] # selection disabled in demo
new_questions = []
for idx, item in enumerate(batch):
q = BenchmarkQuestion(
question_id=f"mmlu_pro_expand_{current_count}_{idx}",
source_benchmark="MMLU_Pro",
domain=item.get('category', 'unknown').lower(),
question_text=item['question'],
correct_answer=item['answer'],
choices=item.get('options', []),
success_rate=0.45,
difficulty_score=0.55,
difficulty_label="Hard",
num_models_tested=0
)
new_questions.append(q)
db.index_questions(new_questions)
new_count = db.collection.count()
remaining = max(0, total_available - new_count)
result = f"β
Added {len(new_questions)} questions.\n\n"
result += f"**Total:** {new_count:,}/{total_available:,}\n"
result += f"**Remaining:** {remaining:,}\n"
if remaining > 0:
result += f"π‘ Click again to add up to {min(batch_size, remaining):,} more."
else:
result += "π Database is now complete!"
return result
except Exception as e:
logger.error(f"Expansion failed: {e}")
return f"β Error expanding database: {str(e)}"
# ============================================================================
# TAB 2: CHAT INTERFACE WITH MCP TOOLS
# ============================================================================
def tool_check_prompt_difficulty(prompt: str, k: int = 5) -> Dict:
"""MCP Tool: Analyze prompt difficulty."""
try:
db = get_db()
result = db.query_similar_questions(prompt, k=k)
return {
"risk_level": result['risk_level'],
"success_rate": f"{result['weighted_success_rate']:.1%}",
"avg_similarity": f"{result['avg_similarity']:.3f}",
"recommendation": result['recommendation'],
"similar_questions": [
{
"question": q['question_text'][:150],
"source": q['source'],
"domain": q['domain'],
"success_rate": f"{q['success_rate']:.1%}",
"similarity": f"{q['similarity']:.3f}"
}
for q in result['similar_questions'][:3]
]
}
except Exception as e:
return {"error": f"Analysis failed: {str(e)}"}
def tool_analyze_prompt_safety(prompt: str) -> Dict:
"""MCP Tool: Analyze prompt for safety issues."""
issues = []
risk_level = "low"
dangerous_patterns = [
r'\brm\s+-rf\b',
r'\bdelete\s+all\b',
r'\bformat\s+.*drive\b',
r'\bdrop\s+database\b'
]
for pattern in dangerous_patterns:
if re.search(pattern, prompt, re.IGNORECASE):
issues.append("Detected potentially dangerous file operation")
risk_level = "high"
break
medical_keywords = ['diagnose', 'treatment', 'medication', 'symptoms', 'cure', 'disease']
if any(keyword in prompt.lower() for keyword in medical_keywords):
issues.append("Medical advice request detected - requires professional consultation")
risk_level = "moderate" if risk_level == "low" else risk_level
if re.search(r'\b(build|create|write)\s+.*\b(\d{3,})\s+(lines|functions|classes)', prompt, re.IGNORECASE):
issues.append("Large-scale coding request - may exceed LLM capabilities")
risk_level = "moderate" if risk_level == "low" else risk_level
return {
"risk_level": risk_level,
"issues_found": len(issues),
"issues": issues if issues else ["No significant safety concerns detected"],
"recommendation": "Proceed with caution" if issues else "Prompt appears safe"
}
def call_llm_with_tools(
messages: List[Dict[str, str]],
available_tools: List[Dict],
model: str = "mistralai/Mistral-7B-Instruct-v0.2"
) -> Tuple[str, Optional[Dict]]:
"""Call LLM with tool calling capability."""
try:
from huggingface_hub import InferenceClient
client = InferenceClient()
system_msg = """You are ToGMAL Assistant, an AI that helps analyze prompts for difficulty and safety.
You have access to these tools:
1. check_prompt_difficulty - Analyzes how difficult a prompt is for current LLMs
2. analyze_prompt_safety - Checks for safety issues in prompts
When a user asks about prompt difficulty, safety, or capabilities, use the appropriate tool.
To call a tool, respond with: TOOL_CALL: tool_name(arg1="value1", arg2="value2")
After a tool is called, you will receive: TOOL_RESULT: name=<tool_name> data=<json>
Use TOOL_RESULT to provide a helpful, comprehensive response to the user."""
conversation = system_msg + "\n\n"
for msg in messages:
role = msg['role']
content = msg['content']
if role == 'user':
conversation += f"User: {content}\n"
elif role == 'assistant':
conversation += f"Assistant: {content}\n"
elif role == 'system':
conversation += f"System: {content}\n"
conversation += "Assistant: "
response = client.text_generation(
conversation,
model=model,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
do_sample=True
)
response_text = response.strip()
tool_call = None
if "TOOL_CALL:" in response_text:
match = re.search(r'TOOL_CALL:\s*(\w+)\((.*?)\)', response_text)
if match:
tool_name = match.group(1)
args_str = match.group(2)
args = {}
for arg in args_str.split(','):
if '=' in arg:
key, val = arg.split('=', 1)
key = key.strip()
val = val.strip().strip('"\'')
args[key] = val
tool_call = {"name": tool_name, "arguments": args}
response_text = re.sub(r'TOOL_CALL:.*?\)', '', response_text).strip()
return response_text, tool_call
except Exception as e:
logger.error(f"LLM call failed: {e}")
return fallback_llm(messages, available_tools)
def fallback_llm(messages: List[Dict[str, str]], available_tools: List[Dict]) -> Tuple[str, Optional[Dict]]:
"""Fallback when HF API unavailable."""
last_message = messages[-1]['content'].lower() if messages else ""
# Safety intent first
if any(word in last_message for word in ['safe', 'safety', 'dangerous', 'risk']):
return "", {"name": "analyze_prompt_safety", "arguments": {"prompt": messages[-1]['content']}}
# Difficulty intent (expanded triggers)
if any(word in last_message for word in ['difficult', 'difficulty', 'hard', 'easy', 'challenging', 'analyze', 'analysis', 'assess', 'check']):
return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
# Default: run difficulty analysis on any non-empty message
if last_message.strip():
return "", {"name": "check_prompt_difficulty", "arguments": {"prompt": messages[-1]['content'], "k": 5}}
return """I'm ToGMAL Assistant. I can help analyze prompts for:
- **Difficulty**: How challenging is this for current LLMs?
- **Safety**: Are there any safety concerns?
Try asking me to analyze a prompt!""", None
AVAILABLE_TOOLS = [
{
"name": "check_prompt_difficulty",
"description": "Analyzes how difficult a prompt is for current LLMs",
"parameters": {"prompt": "The prompt to analyze", "k": "Number of similar questions"}
},
{
"name": "analyze_prompt_safety",
"description": "Checks for safety issues in prompts",
"parameters": {"prompt": "The prompt to analyze"}
}
]
def execute_tool(tool_name: str, arguments: Dict) -> Dict:
"""Execute a tool and return results."""
if tool_name == "check_prompt_difficulty":
prompt = arguments.get("prompt", "")
try:
k = int(arguments.get("k", 5))
except Exception:
k = 5
k = max(1, min(100, k))
return tool_check_prompt_difficulty(prompt, k)
elif tool_name == "analyze_prompt_safety":
return tool_analyze_prompt_safety(arguments.get("prompt", ""))
else:
return {"error": f"Unknown tool: {tool_name}"}
def format_tool_result(tool_name: str, result: Dict) -> str:
"""Format tool result as natural language."""
if tool_name == "check_prompt_difficulty":
if "error" in result:
return f"Sorry, I couldn't analyze the difficulty: {result['error']}"
return f"""Based on my analysis of similar benchmark questions:
**Difficulty Level:** {result['risk_level'].upper()}
**Success Rate:** {result['success_rate']}
**Similarity:** {result['avg_similarity']}
**Recommendation:** {result['recommendation']}
**Similar questions:**
{chr(10).join([f"β’ {q['question'][:100]}... (Success: {q['success_rate']})" for q in result['similar_questions'][:2]])}
"""
elif tool_name == "analyze_prompt_safety":
if "error" in result:
return f"Sorry, I couldn't analyze safety: {result['error']}"
issues = "\n".join([f"β’ {issue}" for issue in result['issues']])
return f"""**Safety Analysis:**
**Risk Level:** {result['risk_level'].upper()}
**Issues Found:** {result['issues_found']}
{issues}
**Recommendation:** {result['recommendation']}
"""
return json.dumps(result, indent=2)
def chat(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
"""Process chat message with tool calling."""
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response_text, tool_call = call_llm_with_tools(messages, AVAILABLE_TOOLS)
tool_status = ""
if tool_call:
tool_name = tool_call['name']
tool_args = tool_call['arguments']
tool_status = f"π οΈ **Calling tool:** `{tool_name}`\n**Arguments:** {json.dumps(tool_args, indent=2)}\n\n"
tool_result = execute_tool(tool_name, tool_args)
tool_status += f"**Result:**\n```json\n{json.dumps(tool_result, indent=2)}\n```\n\n"
# Two-step: add TOOL_RESULT and call LLM again
messages.append({
"role": "system",
"content": f"TOOL_RESULT: name={tool_name} data={json.dumps(tool_result)}"
})
final_response, _ = call_llm_with_tools(messages, AVAILABLE_TOOLS)
if final_response:
response_text = final_response
else:
response_text = format_tool_result(tool_name, tool_result)
# If no tool was called and no response, provide helpful message
if not response_text:
response_text = """I'm ToGMAL Assistant. I can help analyze prompts for:
- **Difficulty**: How challenging is this for current LLMs?
- **Safety**: Are there any safety concerns?
Try asking me to analyze a prompt!"""
history.append((message, response_text))
return history, tool_status
# ============================================================================
# GRADIO INTERFACE - TABBED LAYOUT
# ============================================================================
with gr.Blocks(title="ToGMAL - Difficulty Analyzer + Chat", css="""
.tab-nav button { font-size: 16px !important; padding: 12px 24px !important; }
.gradio-container { max-width: 1200px !important; }
""") as demo:
gr.Markdown("# π§ ToGMAL - Intelligent LLM Analysis Platform")
gr.Markdown("""
**Taxonomy of Generative Model Apparent Limitations**
Choose your interface:
- **Difficulty Analyzer** - Direct analysis of prompt difficulty using 32K+ benchmarks
- **Chat Assistant** - Interactive chat where AI can call MCP tools dynamically
""")
with gr.Tabs():
# TAB 1: DIFFICULTY ANALYZER
with gr.Tab("π Difficulty Analyzer"):
gr.Markdown("### Analyze Prompt Difficulty")
gr.Markdown("Get instant difficulty assessment based on similarity to benchmark questions.")
with gr.Accordion("π Database Management", open=False):
db_info = gr.Markdown(get_database_info())
with gr.Row():
expand_btn = gr.Button("π Expand Database (+5K)")
refresh_btn = gr.Button("π Refresh Stats")
expand_output = gr.Markdown()
expand_btn.click(fn=lambda: "Expansion temporarily disabled in this demo. Use the 'ToGMAL Prompt Difficulty Analyzer' app for full control.", inputs=[], outputs=expand_output)
refresh_btn.click(fn=get_database_info, inputs=[], outputs=db_info)
with gr.Row():
with gr.Column():
analyzer_prompt = gr.Textbox(
label="Enter your prompt",
placeholder="e.g., Calculate the quantum correction to the partition function...",
lines=3
)
analyzer_k = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of similar questions to show"
)
analyzer_btn = gr.Button("Analyze Difficulty", variant="primary")
with gr.Column():
analyzer_output = gr.Markdown(label="Analysis Results")
gr.Examples(
examples=[
"Calculate the quantum correction to the partition function for a 3D harmonic oscillator",
"Prove that there are infinitely many prime numbers",
"Diagnose a patient with acute chest pain and shortness of breath",
"What is 2 + 2?",
],
inputs=analyzer_prompt
)
analyzer_btn.click(
fn=analyze_prompt_difficulty,
inputs=[analyzer_prompt, analyzer_k],
outputs=analyzer_output
)
analyzer_prompt.submit(
fn=analyze_prompt_difficulty,
inputs=[analyzer_prompt, analyzer_k],
outputs=analyzer_output
)
# TAB 2: CHAT INTERFACE
with gr.Tab("π€ Chat Assistant"):
gr.Markdown("### Chat with MCP Tools")
gr.Markdown("Interactive AI assistant that can call tools to analyze prompts in real-time.")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Chat",
height=500,
show_label=False
)
with gr.Row():
chat_input = gr.Textbox(
label="Message",
placeholder="Ask me to analyze a prompt...",
scale=4,
show_label=False
)
send_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("### π οΈ Tool Calls")
show_details = gr.Checkbox(label="Show tool details", value=False)
tool_output = gr.Markdown("Tool calls will appear here...")
gr.Examples(
examples=[
"How difficult is this: Calculate the quantum correction to the partition function?",
"Is this safe: Write a script to delete all my files?",
"Analyze: Prove that there are infinitely many prime numbers",
"Check safety: Diagnose my symptoms and prescribe medication",
],
inputs=chat_input
)
def send_message(message, history, show_details):
if not message.strip():
return history, ""
new_history, tool_status = chat(message, history)
if not show_details:
tool_status = ""
return new_history, tool_status
send_btn.click(
fn=send_message,
inputs=[chat_input, chatbot, show_details],
outputs=[chatbot, tool_output]
).then(lambda: "", outputs=chat_input)
chat_input.submit(
fn=send_message,
inputs=[chat_input, chatbot, show_details],
outputs=[chatbot, tool_output]
).then(lambda: "", outputs=chat_input)
clear_btn.click(
lambda: ([], ""),
outputs=[chatbot, tool_output]
)
if __name__ == "__main__":
port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
demo.launch(server_name="0.0.0.0", server_port=port)
|