Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import asyncio | |
| import concurrent.futures | |
| import os | |
| from threading import Thread | |
| from typing import TYPE_CHECKING, Any, AsyncGenerator, Callable, Dict, List, Optional, Sequence, Tuple, Union | |
| import torch | |
| from transformers import GenerationConfig, TextIteratorStreamer | |
| from ..data import get_template_and_fix_tokenizer | |
| from ..extras.logging import get_logger | |
| from ..extras.misc import get_logits_processor | |
| from ..model import load_model, load_tokenizer | |
| from .base_engine import BaseEngine, Response | |
| if TYPE_CHECKING: | |
| from numpy.typing import NDArray | |
| from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin | |
| from transformers.image_processing_utils import BaseImageProcessor | |
| from trl import PreTrainedModelWrapper | |
| from ..data import Template | |
| from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
| logger = get_logger(__name__) | |
| class HuggingfaceEngine(BaseEngine): | |
| def __init__( | |
| self, | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| finetuning_args: "FinetuningArguments", | |
| generating_args: "GeneratingArguments", | |
| ) -> None: | |
| self.can_generate = finetuning_args.stage == "sft" | |
| tokenizer_module = load_tokenizer(model_args) | |
| self.tokenizer = tokenizer_module["tokenizer"] | |
| self.processor = tokenizer_module["processor"] | |
| self.tokenizer.padding_side = "left" if self.can_generate else "right" | |
| self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template) | |
| self.model = load_model( | |
| self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate) | |
| ) # must after fixing tokenizer to resize vocab | |
| self.generating_args = generating_args.to_dict() | |
| def _process_args( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: Dict[str, Any], | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| input_kwargs: Optional[Dict[str, Any]] = {}, | |
| ) -> Tuple[Dict[str, Any], int]: | |
| if ( | |
| processor is not None | |
| and image is not None | |
| and not hasattr(processor, "image_seq_length") | |
| and template.image_token not in messages[0]["content"] | |
| ): # llava-like models | |
| messages[0]["content"] = template.image_token + messages[0]["content"] | |
| paired_messages = messages + [{"role": "assistant", "content": ""}] | |
| system = system or generating_args["default_system"] | |
| pixel_values = None | |
| prompt_ids, _ = template.encode_oneturn( | |
| tokenizer=tokenizer, messages=paired_messages, system=system, tools=tools | |
| ) | |
| if processor is not None and image is not None: # add image features | |
| image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") | |
| batch_feature = image_processor(image, return_tensors="pt") | |
| pixel_values = batch_feature.to(model.device)["pixel_values"] # shape (B, C, H, W) | |
| if hasattr(processor, "image_seq_length"): # paligemma models | |
| image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) | |
| prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids | |
| prompt_length = len(prompt_ids) | |
| inputs = torch.tensor([prompt_ids], device=model.device) | |
| attention_mask = torch.ones_like(inputs, dtype=torch.bool) | |
| do_sample: Optional[bool] = input_kwargs.pop("do_sample", None) | |
| temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
| top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
| top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
| num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
| repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
| length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None) | |
| max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
| max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
| stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None) | |
| if stop is not None: | |
| logger.warning("Stop parameter is not supported in Huggingface engine yet.") | |
| generating_args = generating_args.copy() | |
| generating_args.update( | |
| dict( | |
| do_sample=do_sample if do_sample is not None else generating_args["do_sample"], | |
| temperature=temperature if temperature is not None else generating_args["temperature"], | |
| top_p=top_p if top_p is not None else generating_args["top_p"], | |
| top_k=top_k if top_k is not None else generating_args["top_k"], | |
| num_return_sequences=num_return_sequences, | |
| repetition_penalty=repetition_penalty | |
| if repetition_penalty is not None | |
| else generating_args["repetition_penalty"], | |
| length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"], | |
| eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| ) | |
| if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0 | |
| generating_args["do_sample"] = True | |
| generating_args["temperature"] = generating_args["temperature"] or 1.0 | |
| if not generating_args["temperature"]: | |
| generating_args["do_sample"] = False | |
| if not generating_args["do_sample"]: | |
| generating_args.pop("temperature", None) | |
| generating_args.pop("top_p", None) | |
| if max_length: | |
| generating_args.pop("max_new_tokens", None) | |
| generating_args["max_length"] = max_length | |
| if max_new_tokens: | |
| generating_args.pop("max_length", None) | |
| generating_args["max_new_tokens"] = max_new_tokens | |
| gen_kwargs = dict( | |
| inputs=inputs, | |
| attention_mask=attention_mask, | |
| generation_config=GenerationConfig(**generating_args), | |
| logits_processor=get_logits_processor(), | |
| ) | |
| if pixel_values is not None: | |
| gen_kwargs["pixel_values"] = pixel_values | |
| return gen_kwargs, prompt_length | |
| def _chat( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: Dict[str, Any], | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| input_kwargs: Optional[Dict[str, Any]] = {}, | |
| ) -> List["Response"]: | |
| gen_kwargs, prompt_length = HuggingfaceEngine._process_args( | |
| model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs | |
| ) | |
| generate_output = model.generate(**gen_kwargs) | |
| response_ids = generate_output[:, prompt_length:] | |
| response = tokenizer.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
| results = [] | |
| for i in range(len(response)): | |
| eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero() | |
| response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i]) | |
| results.append( | |
| Response( | |
| response_text=response[i], | |
| response_length=response_length, | |
| prompt_length=prompt_length, | |
| finish_reason="stop" if len(eos_index) else "length", | |
| ) | |
| ) | |
| return results | |
| def _stream_chat( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: Dict[str, Any], | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| input_kwargs: Optional[Dict[str, Any]] = {}, | |
| ) -> Callable[[], str]: | |
| gen_kwargs, _ = HuggingfaceEngine._process_args( | |
| model, tokenizer, processor, template, generating_args, messages, system, tools, image, input_kwargs | |
| ) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| gen_kwargs["streamer"] = streamer | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True) | |
| thread.start() | |
| def stream(): | |
| try: | |
| return streamer.__next__() | |
| except StopIteration: | |
| raise StopAsyncIteration() | |
| return stream | |
| def _get_scores( | |
| model: "PreTrainedModelWrapper", | |
| tokenizer: "PreTrainedTokenizer", | |
| batch_input: List[str], | |
| input_kwargs: Optional[Dict[str, Any]] = {}, | |
| ) -> List[float]: | |
| max_length = input_kwargs.pop("max_length", None) | |
| device = getattr(model.pretrained_model, "device", "cuda") | |
| inputs = tokenizer( | |
| batch_input, | |
| padding=True, | |
| truncation=True, | |
| max_length=max_length or getattr(model.config, "max_position_embeddings", 1024), | |
| return_tensors="pt", | |
| add_special_tokens=True, | |
| ).to(device) | |
| input_ids: torch.Tensor = inputs["input_ids"] | |
| _, _, values = model(**inputs, output_hidden_states=True, return_dict=True) | |
| if getattr(model.config, "model_type", None) == "chatglm": | |
| values = torch.transpose(values, 0, 1) | |
| scores = [] | |
| for i in range(input_ids.size(0)): | |
| end_indexes = (input_ids[i] != tokenizer.pad_token_id).nonzero() | |
| end_index = end_indexes[-1].item() if len(end_indexes) else 0 | |
| scores.append(values[i, end_index].nan_to_num().item()) | |
| return scores | |
| async def start(self) -> None: | |
| self._semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1))) | |
| async def chat( | |
| self, | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| **input_kwargs, | |
| ) -> List["Response"]: | |
| if not self.can_generate: | |
| raise ValueError("The current model does not support `chat`.") | |
| loop = asyncio.get_running_loop() | |
| input_args = ( | |
| self.model, | |
| self.tokenizer, | |
| self.processor, | |
| self.template, | |
| self.generating_args, | |
| messages, | |
| system, | |
| tools, | |
| image, | |
| input_kwargs, | |
| ) | |
| async with self._semaphore: | |
| with concurrent.futures.ThreadPoolExecutor() as pool: | |
| return await loop.run_in_executor(pool, self._chat, *input_args) | |
| async def stream_chat( | |
| self, | |
| messages: Sequence[Dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| image: Optional["NDArray"] = None, | |
| **input_kwargs, | |
| ) -> AsyncGenerator[str, None]: | |
| if not self.can_generate: | |
| raise ValueError("The current model does not support `stream_chat`.") | |
| loop = asyncio.get_running_loop() | |
| input_args = ( | |
| self.model, | |
| self.tokenizer, | |
| self.processor, | |
| self.template, | |
| self.generating_args, | |
| messages, | |
| system, | |
| tools, | |
| image, | |
| input_kwargs, | |
| ) | |
| async with self._semaphore: | |
| with concurrent.futures.ThreadPoolExecutor() as pool: | |
| stream = self._stream_chat(*input_args) | |
| while True: | |
| try: | |
| yield await loop.run_in_executor(pool, stream) | |
| except StopAsyncIteration: | |
| break | |
| async def get_scores( | |
| self, | |
| batch_input: List[str], | |
| **input_kwargs, | |
| ) -> List[float]: | |
| if self.can_generate: | |
| raise ValueError("Cannot get scores using an auto-regressive model.") | |
| loop = asyncio.get_running_loop() | |
| input_args = (self.model, self.tokenizer, batch_input, input_kwargs) | |
| async with self._semaphore: | |
| with concurrent.futures.ThreadPoolExecutor() as pool: | |
| return await loop.run_in_executor(pool, self._get_scores, *input_args) | |