Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import os | |
| import sys | |
| from typing import TYPE_CHECKING, Literal, Optional, Union | |
| import numpy as np | |
| from datasets import load_dataset, load_from_disk | |
| from ..extras.constants import FILEEXT2TYPE | |
| from ..extras.logging import get_logger | |
| from ..extras.misc import has_tokenized_data | |
| from .aligner import align_dataset | |
| from .data_utils import merge_dataset | |
| from .parser import get_dataset_list | |
| from .preprocess import get_preprocess_and_print_func | |
| from .template import get_template_and_fix_tokenizer | |
| if TYPE_CHECKING: | |
| from datasets import Dataset, IterableDataset | |
| from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments | |
| from ..hparams import DataArguments, ModelArguments | |
| from .parser import DatasetAttr | |
| logger = get_logger(__name__) | |
| def load_single_dataset( | |
| dataset_attr: "DatasetAttr", | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| training_args: "Seq2SeqTrainingArguments", | |
| ) -> Union["Dataset", "IterableDataset"]: | |
| logger.info("Loading dataset {}...".format(dataset_attr)) | |
| data_path, data_name, data_dir, data_files = None, None, None, None | |
| if dataset_attr.load_from in ["hf_hub", "ms_hub"]: | |
| data_path = dataset_attr.dataset_name | |
| data_name = dataset_attr.subset | |
| data_dir = dataset_attr.folder | |
| elif dataset_attr.load_from == "script": | |
| data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
| data_name = dataset_attr.subset | |
| data_dir = dataset_attr.folder | |
| elif dataset_attr.load_from == "file": | |
| data_files = [] | |
| local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
| if os.path.isdir(local_path): # is directory | |
| for file_name in os.listdir(local_path): | |
| data_files.append(os.path.join(local_path, file_name)) | |
| if data_path is None: | |
| data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) | |
| elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): | |
| raise ValueError("File types should be identical.") | |
| elif os.path.isfile(local_path): # is file | |
| data_files.append(local_path) | |
| data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) | |
| else: | |
| raise ValueError("File {} not found.".format(local_path)) | |
| if data_path is None: | |
| raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys()))) | |
| else: | |
| raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from)) | |
| if dataset_attr.load_from == "ms_hub": | |
| try: | |
| from modelscope import MsDataset | |
| from modelscope.utils.config_ds import MS_DATASETS_CACHE | |
| cache_dir = model_args.cache_dir or MS_DATASETS_CACHE | |
| dataset = MsDataset.load( | |
| dataset_name=data_path, | |
| subset_name=data_name, | |
| data_dir=data_dir, | |
| data_files=data_files, | |
| split=data_args.split, | |
| cache_dir=cache_dir, | |
| token=model_args.ms_hub_token, | |
| use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
| ) | |
| if isinstance(dataset, MsDataset): | |
| dataset = dataset.to_hf_dataset() | |
| except ImportError: | |
| raise ImportError("Please install modelscope via `pip install modelscope -U`") | |
| else: | |
| if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0 | |
| kwargs = {"trust_remote_code": True} | |
| else: | |
| kwargs = {} | |
| dataset = load_dataset( | |
| path=data_path, | |
| name=data_name, | |
| data_dir=data_dir, | |
| data_files=data_files, | |
| split=data_args.split, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.hf_hub_token, | |
| streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
| **kwargs, | |
| ) | |
| if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True | |
| dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter | |
| if dataset_attr.num_samples is not None and not data_args.streaming: | |
| target_num = dataset_attr.num_samples | |
| indexes = np.random.permutation(len(dataset))[:target_num] | |
| target_num -= len(indexes) | |
| if target_num > 0: | |
| expand_indexes = np.random.choice(len(dataset), target_num) | |
| indexes = np.concatenate((indexes, expand_indexes), axis=0) | |
| assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched." | |
| dataset = dataset.select(indexes) | |
| logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr)) | |
| if data_args.max_samples is not None: # truncate dataset | |
| max_samples = min(data_args.max_samples, len(dataset)) | |
| dataset = dataset.select(range(max_samples)) | |
| return align_dataset(dataset, dataset_attr, data_args, training_args) | |
| def get_dataset( | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| training_args: "Seq2SeqTrainingArguments", | |
| stage: Literal["pt", "sft", "rm", "ppo", "kto"], | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"] = None, | |
| ) -> Union["Dataset", "IterableDataset"]: | |
| template = get_template_and_fix_tokenizer(tokenizer, data_args.template) | |
| if data_args.train_on_prompt and template.efficient_eos: | |
| raise ValueError("Current template does not support `train_on_prompt`.") | |
| # Load tokenized dataset | |
| if data_args.tokenized_path is not None: | |
| if has_tokenized_data(data_args.tokenized_path): | |
| logger.warning("Loading dataset from disk will ignore other data arguments.") | |
| dataset = load_from_disk(data_args.tokenized_path) | |
| logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path)) | |
| if data_args.streaming: | |
| dataset = dataset.to_iterable_dataset() | |
| return dataset | |
| if data_args.streaming: | |
| raise ValueError("Turn off `streaming` when saving dataset to disk.") | |
| with training_args.main_process_first(desc="load dataset"): | |
| all_datasets = [] | |
| for dataset_attr in get_dataset_list(data_args): | |
| if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True): | |
| raise ValueError("The dataset is not applicable in the current training stage.") | |
| all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args, training_args)) | |
| dataset = merge_dataset(all_datasets, data_args, training_args) | |
| with training_args.main_process_first(desc="pre-process dataset"): | |
| preprocess_func, print_function = get_preprocess_and_print_func( | |
| data_args, training_args, stage, template, tokenizer, processor | |
| ) | |
| column_names = list(next(iter(dataset)).keys()) | |
| kwargs = {} | |
| if not data_args.streaming: | |
| kwargs = dict( | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), | |
| desc="Running tokenizer on dataset", | |
| ) | |
| dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs) | |
| if data_args.tokenized_path is not None: | |
| if training_args.should_save: | |
| dataset.save_to_disk(data_args.tokenized_path) | |
| logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path)) | |
| logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path)) | |
| sys.exit(0) | |
| if training_args.should_log: | |
| try: | |
| print_function(next(iter(dataset))) | |
| except StopIteration: | |
| if stage == "pt": | |
| raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.") | |
| else: | |
| raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.") | |
| return dataset | |