Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # This code is inspired by the CarperAI's trlx library. | |
| # https://github.com/CarperAI/trlx/blob/v0.7.0/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # MIT License | |
| # | |
| # Copyright (c) 2022 CarperAI | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| from typing import TYPE_CHECKING, List, Optional | |
| from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset | |
| from ...extras.callbacks import FixValueHeadModelCallback | |
| from ...extras.misc import fix_valuehead_checkpoint | |
| from ...extras.ploting import plot_loss | |
| from ...model import load_model, load_tokenizer | |
| from ..trainer_utils import create_modelcard_and_push | |
| from .metric import compute_accuracy | |
| from .trainer import PairwiseTrainer | |
| if TYPE_CHECKING: | |
| from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
| from ...hparams import DataArguments, FinetuningArguments, ModelArguments | |
| def run_rm( | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| training_args: "Seq2SeqTrainingArguments", | |
| finetuning_args: "FinetuningArguments", | |
| callbacks: Optional[List["TrainerCallback"]] = None, | |
| ): | |
| tokenizer_module = load_tokenizer(model_args) | |
| tokenizer = tokenizer_module["tokenizer"] | |
| dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module) | |
| model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train, add_valuehead=True) | |
| data_collator = PairwiseDataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) | |
| # Update arguments | |
| training_args.remove_unused_columns = False # important for pairwise dataset | |
| # Initialize our Trainer | |
| trainer = PairwiseTrainer( | |
| model=model, | |
| args=training_args, | |
| finetuning_args=finetuning_args, | |
| data_collator=data_collator, | |
| callbacks=callbacks + [FixValueHeadModelCallback()], | |
| compute_metrics=compute_accuracy, | |
| **tokenizer_module, | |
| **split_dataset(dataset, data_args, training_args), | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
| trainer.save_model() | |
| if training_args.should_save: | |
| fix_valuehead_checkpoint(model, training_args.output_dir, training_args.save_safetensors) | |
| trainer.log_metrics("train", train_result.metrics) | |
| trainer.save_metrics("train", train_result.metrics) | |
| trainer.save_state() | |
| if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
| plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"]) | |
| # Evaluation | |
| if training_args.do_eval: | |
| metrics = trainer.evaluate(metric_key_prefix="eval") | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Predict | |
| if training_args.do_predict: | |
| predict_results = trainer.predict(dataset, metric_key_prefix="predict") | |
| trainer.log_metrics("predict", predict_results.metrics) | |
| trainer.save_metrics("predict", predict_results.metrics) | |
| trainer.save_predictions(predict_results) | |
| # Create model card | |
| create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |