Spaces:
Running
Running
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Dict, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalVAEMixin | |
| from diffusers.models.attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, Attention, | |
| AttentionProcessor, AttnAddedKVProcessor, AttnProcessor) | |
| from diffusers.models.autoencoders.vae import (DecoderOutput, | |
| DiagonalGaussianDistribution) | |
| from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.utils.accelerate_utils import apply_forward_hook | |
| from torch import nn | |
| from ..vae.ldm.models.omnigen_enc_dec import Decoder as omnigen_Mag_Decoder | |
| from ..vae.ldm.models.omnigen_enc_dec import Encoder as omnigen_Mag_Encoder | |
| def str_eval(item): | |
| if type(item) == str: | |
| return eval(item) | |
| else: | |
| return item | |
| class AutoencoderKLMagvit(ModelMixin, ConfigMixin, FromOriginalVAEMixin): | |
| r""" | |
| A VAE model with KL loss for encoding images into latents and decoding latent representations into images. | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
| out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| Tuple of downsample block types. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| Tuple of upsample block types. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
| Tuple of block output channels. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. | |
| sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
| scaling_factor (`float`, *optional*, defaults to 0.18215): | |
| The component-wise standard deviation of the trained latent space computed using the first batch of the | |
| training set. This is used to scale the latent space to have unit variance when training the diffusion | |
| model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
| diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
| / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
| Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
| force_upcast (`bool`, *optional*, default to `True`): | |
| If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
| can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
| `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| ch = 128, | |
| ch_mult = [ 1,2,4,4 ], | |
| use_gc_blocks = None, | |
| down_block_types: tuple = None, | |
| up_block_types: tuple = None, | |
| mid_block_type: str = "MidBlock3D", | |
| mid_block_use_attention: bool = True, | |
| mid_block_attention_type: str = "3d", | |
| mid_block_num_attention_heads: int = 1, | |
| layers_per_block: int = 2, | |
| act_fn: str = "silu", | |
| num_attention_heads: int = 1, | |
| latent_channels: int = 4, | |
| norm_num_groups: int = 32, | |
| scaling_factor: float = 0.1825, | |
| slice_compression_vae=False, | |
| mini_batch_encoder=9, | |
| mini_batch_decoder=3, | |
| ): | |
| super().__init__() | |
| down_block_types = str_eval(down_block_types) | |
| up_block_types = str_eval(up_block_types) | |
| self.encoder = omnigen_Mag_Encoder( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| ch = ch, | |
| ch_mult = ch_mult, | |
| use_gc_blocks=use_gc_blocks, | |
| mid_block_type=mid_block_type, | |
| mid_block_use_attention=mid_block_use_attention, | |
| mid_block_attention_type=mid_block_attention_type, | |
| mid_block_num_attention_heads=mid_block_num_attention_heads, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| num_attention_heads=num_attention_heads, | |
| double_z=True, | |
| slice_compression_vae=slice_compression_vae, | |
| mini_batch_encoder=mini_batch_encoder, | |
| ) | |
| self.decoder = omnigen_Mag_Decoder( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| ch = ch, | |
| ch_mult = ch_mult, | |
| use_gc_blocks=use_gc_blocks, | |
| mid_block_type=mid_block_type, | |
| mid_block_use_attention=mid_block_use_attention, | |
| mid_block_attention_type=mid_block_attention_type, | |
| mid_block_num_attention_heads=mid_block_num_attention_heads, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| num_attention_heads=num_attention_heads, | |
| slice_compression_vae=slice_compression_vae, | |
| mini_batch_decoder=mini_batch_decoder, | |
| ) | |
| self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) | |
| self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) | |
| self.slice_compression_vae = slice_compression_vae | |
| self.mini_batch_encoder = mini_batch_encoder | |
| self.mini_batch_decoder = mini_batch_decoder | |
| self.use_slicing = False | |
| self.use_tiling = False | |
| self.tile_sample_min_size = 256 | |
| self.tile_overlap_factor = 0.25 | |
| self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(ch_mult) - 1))) | |
| self.scaling_factor = scaling_factor | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (omnigen_Mag_Encoder, omnigen_Mag_Decoder)): | |
| module.gradient_checkpointing = value | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnAddedKVProcessor() | |
| elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor) | |
| def encode( | |
| self, x: torch.FloatTensor, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
| """ | |
| Encode a batch of images into latents. | |
| Args: | |
| x (`torch.FloatTensor`): Input batch of images. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
| Returns: | |
| The latent representations of the encoded images. If `return_dict` is True, a | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
| """ | |
| if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): | |
| return self.tiled_encode(x, return_dict=return_dict) | |
| if self.use_slicing and x.shape[0] > 1: | |
| encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] | |
| h = torch.cat(encoded_slices) | |
| else: | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
| if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): | |
| return self.tiled_decode(z, return_dict=return_dict) | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode( | |
| self, z: torch.FloatTensor, return_dict: bool = True, generator=None | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| """ | |
| Decode a batch of images. | |
| Args: | |
| z (`torch.FloatTensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| if self.use_slicing and z.shape[0] > 1: | |
| decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
| decoded = torch.cat(decoded_slices) | |
| else: | |
| decoded = self._decode(z).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def blend_v( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( | |
| 1 - y / blend_extent | |
| ) + b[:, :, :, y, :] * (y / blend_extent) | |
| return b | |
| def blend_h( | |
| self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
| ) -> torch.Tensor: | |
| blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( | |
| 1 - x / blend_extent | |
| ) + b[:, :, :, :, x] * (x / blend_extent) | |
| return b | |
| def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: | |
| overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_latent_min_size - blend_extent | |
| # Split the image into 512x512 tiles and encode them separately. | |
| rows = [] | |
| for i in range(0, x.shape[3], overlap_size): | |
| row = [] | |
| for j in range(0, x.shape[4], overlap_size): | |
| tile = x[ | |
| :, | |
| :, | |
| :, | |
| i : i + self.tile_sample_min_size, | |
| j : j + self.tile_sample_min_size, | |
| ] | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| moments = torch.cat(result_rows, dim=3) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: | |
| overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) | |
| blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) | |
| row_limit = self.tile_sample_min_size - blend_extent | |
| # Split z into overlapping 64x64 tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, z.shape[3], overlap_size): | |
| row = [] | |
| for j in range(0, z.shape[4], overlap_size): | |
| tile = z[ | |
| :, | |
| :, | |
| :, | |
| i : i + self.tile_latent_min_size, | |
| j : j + self.tile_latent_min_size, | |
| ] | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile) | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent) | |
| result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| dec = torch.cat(result_rows, dim=3) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput, torch.FloatTensor]: | |
| r""" | |
| Args: | |
| sample (`torch.FloatTensor`): Input sample. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z).sample | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, | |
| key, value) are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def from_pretrained(cls, pretrained_model_path, subfolder=None, **vae_additional_kwargs): | |
| import json | |
| import os | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| model = cls.from_config(config, **vae_additional_kwargs) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| if not os.path.isfile(model_file): | |
| raise RuntimeError(f"{model_file} does not exist") | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| print(m, u) | |
| return model | |