Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ import spaces
|
|
| 8 |
import torch
|
| 9 |
from diffusers import FluxControlNetModel
|
| 10 |
from diffusers.pipelines import FluxControlNetPipeline
|
| 11 |
-
from diffusers.utils import load_image
|
| 12 |
from gradio_imageslider import ImageSlider
|
| 13 |
from PIL import Image
|
| 14 |
|
|
@@ -46,12 +45,12 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
| 46 |
|
| 47 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 48 |
warnings.warn(
|
| 49 |
-
f"
|
| 50 |
)
|
| 51 |
input_image = input_image.resize(
|
| 52 |
(
|
| 53 |
-
int(aspect_ratio * MAX_PIXEL_BUDGET // upscale_factor),
|
| 54 |
-
int(MAX_PIXEL_BUDGET // aspect_ratio // upscale_factor),
|
| 55 |
)
|
| 56 |
)
|
| 57 |
|
|
@@ -63,23 +62,21 @@ def process_input(input_image, upscale_factor, **kwargs):
|
|
| 63 |
return input_image.resize((w, h)), w_original, h_original
|
| 64 |
|
| 65 |
|
| 66 |
-
|
| 67 |
def infer(
|
| 68 |
seed,
|
| 69 |
randomize_seed,
|
| 70 |
input_image,
|
| 71 |
num_inference_steps,
|
| 72 |
upscale_factor,
|
|
|
|
| 73 |
progress=gr.Progress(track_tqdm=True),
|
| 74 |
):
|
| 75 |
-
print(input_image)
|
| 76 |
if randomize_seed:
|
| 77 |
seed = random.randint(0, MAX_SEED)
|
| 78 |
-
|
| 79 |
input_image, w_original, h_original = process_input(input_image, upscale_factor)
|
| 80 |
|
| 81 |
-
print(input_image.size, w_original, h_original)
|
| 82 |
-
|
| 83 |
# rescale with upscale factor
|
| 84 |
w, h = input_image.size
|
| 85 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
|
@@ -89,7 +86,7 @@ def infer(
|
|
| 89 |
image = pipe(
|
| 90 |
prompt="",
|
| 91 |
control_image=control_image,
|
| 92 |
-
controlnet_conditioning_scale=
|
| 93 |
num_inference_steps=num_inference_steps,
|
| 94 |
guidance_scale=3.5,
|
| 95 |
height=control_image.size[1],
|
|
@@ -101,7 +98,7 @@ def infer(
|
|
| 101 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
| 102 |
image.save("output.jpg")
|
| 103 |
# convert to numpy
|
| 104 |
-
return [
|
| 105 |
|
| 106 |
|
| 107 |
with gr.Blocks(css=css) as demo:
|
|
@@ -135,6 +132,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 135 |
step=1,
|
| 136 |
value=4,
|
| 137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
seed = gr.Slider(
|
| 139 |
label="Seed",
|
| 140 |
minimum=0,
|
|
@@ -166,10 +170,17 @@ with gr.Blocks(css=css) as demo:
|
|
| 166 |
gr.on(
|
| 167 |
[run_button.click],
|
| 168 |
fn=infer,
|
| 169 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
outputs=result,
|
| 171 |
show_api=False,
|
| 172 |
# show_progress="minimal",
|
| 173 |
)
|
| 174 |
|
| 175 |
-
demo.queue().launch()
|
|
|
|
| 8 |
import torch
|
| 9 |
from diffusers import FluxControlNetModel
|
| 10 |
from diffusers.pipelines import FluxControlNetPipeline
|
|
|
|
| 11 |
from gradio_imageslider import ImageSlider
|
| 12 |
from PIL import Image
|
| 13 |
|
|
|
|
| 45 |
|
| 46 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 47 |
warnings.warn(
|
| 48 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
| 49 |
)
|
| 50 |
input_image = input_image.resize(
|
| 51 |
(
|
| 52 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
| 53 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
| 54 |
)
|
| 55 |
)
|
| 56 |
|
|
|
|
| 62 |
return input_image.resize((w, h)), w_original, h_original
|
| 63 |
|
| 64 |
|
| 65 |
+
@spaces.GPU
|
| 66 |
def infer(
|
| 67 |
seed,
|
| 68 |
randomize_seed,
|
| 69 |
input_image,
|
| 70 |
num_inference_steps,
|
| 71 |
upscale_factor,
|
| 72 |
+
controlnet_conditioning_scale,
|
| 73 |
progress=gr.Progress(track_tqdm=True),
|
| 74 |
):
|
|
|
|
| 75 |
if randomize_seed:
|
| 76 |
seed = random.randint(0, MAX_SEED)
|
| 77 |
+
true_input_image = input_image
|
| 78 |
input_image, w_original, h_original = process_input(input_image, upscale_factor)
|
| 79 |
|
|
|
|
|
|
|
| 80 |
# rescale with upscale factor
|
| 81 |
w, h = input_image.size
|
| 82 |
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
|
|
|
| 86 |
image = pipe(
|
| 87 |
prompt="",
|
| 88 |
control_image=control_image,
|
| 89 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 90 |
num_inference_steps=num_inference_steps,
|
| 91 |
guidance_scale=3.5,
|
| 92 |
height=control_image.size[1],
|
|
|
|
| 98 |
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
| 99 |
image.save("output.jpg")
|
| 100 |
# convert to numpy
|
| 101 |
+
return [true_input_image, image, seed]
|
| 102 |
|
| 103 |
|
| 104 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 132 |
step=1,
|
| 133 |
value=4,
|
| 134 |
)
|
| 135 |
+
controlnet_conditioning_scale = gr.Slider(
|
| 136 |
+
label="Controlnet Conditioning Scale",
|
| 137 |
+
minimum=0.1,
|
| 138 |
+
maximum=1.5,
|
| 139 |
+
step=0.1,
|
| 140 |
+
value=0.6,
|
| 141 |
+
)
|
| 142 |
seed = gr.Slider(
|
| 143 |
label="Seed",
|
| 144 |
minimum=0,
|
|
|
|
| 170 |
gr.on(
|
| 171 |
[run_button.click],
|
| 172 |
fn=infer,
|
| 173 |
+
inputs=[
|
| 174 |
+
seed,
|
| 175 |
+
randomize_seed,
|
| 176 |
+
input_im,
|
| 177 |
+
num_inference_steps,
|
| 178 |
+
upscale_factor,
|
| 179 |
+
controlnet_conditioning_scale,
|
| 180 |
+
],
|
| 181 |
outputs=result,
|
| 182 |
show_api=False,
|
| 183 |
# show_progress="minimal",
|
| 184 |
)
|
| 185 |
|
| 186 |
+
demo.queue().launch(share=True)
|