Spaces:
Sleeping
Sleeping
kgupta21
commited on
Commit
·
746ae2b
1
Parent(s):
eb5c340
local inference page with fixes to gpu with zerogpu + add accelerate for device mapping - removed previous and fixed overall
Browse files- app.py +69 -98
- requirements.txt +6 -5
app.py
CHANGED
|
@@ -21,59 +21,27 @@ logger = logging.getLogger(__name__)
|
|
| 21 |
APP_VERSION = "1.0.0"
|
| 22 |
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
pipe = None
|
| 26 |
-
llm = None
|
| 27 |
-
tokenizer = None
|
| 28 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
| 29 |
-
logger.info(f"Using device: {device}")
|
| 30 |
-
|
| 31 |
-
# Initialize Whisper
|
| 32 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
| 33 |
BATCH_SIZE = 8
|
| 34 |
FILE_LIMIT_MB = 5000
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
pipe = pipeline(
|
| 39 |
-
task="automatic-speech-recognition",
|
| 40 |
-
model=MODEL_NAME,
|
| 41 |
-
chunk_length_s=30,
|
| 42 |
-
device=device,
|
| 43 |
-
)
|
| 44 |
-
except Exception as e:
|
| 45 |
-
logger.error(f"Error initializing Whisper model: {str(e)}")
|
| 46 |
-
pipe = None
|
| 47 |
-
|
| 48 |
-
# Initialize Llama
|
| 49 |
-
try:
|
| 50 |
-
logger.info("Initializing Llama model...")
|
| 51 |
llm_model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
|
| 52 |
-
|
| 53 |
-
# Initialize tokenizer first
|
| 54 |
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
| 55 |
tokenizer.use_default_system_prompt = False
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
load_in_8bit=True # Use 8-bit quantization to reduce memory usage
|
| 65 |
-
)
|
| 66 |
-
else:
|
| 67 |
-
logger.info("Loading Llama model on CPU...")
|
| 68 |
-
llm = AutoModelForCausalLM.from_pretrained(
|
| 69 |
-
llm_model_id,
|
| 70 |
-
device_map={"": "cpu"},
|
| 71 |
-
low_cpu_mem_usage=True
|
| 72 |
-
)
|
| 73 |
-
except Exception as e:
|
| 74 |
-
logger.error(f"Error initializing Llama model: {str(e)}")
|
| 75 |
-
llm = None
|
| 76 |
-
tokenizer = None
|
| 77 |
|
| 78 |
try:
|
| 79 |
# Load only 10 rows from the dataset
|
|
@@ -133,8 +101,6 @@ def transcribe(inputs, task="transcribe"):
|
|
| 133 |
"""Transcribe audio using Whisper"""
|
| 134 |
if inputs is None:
|
| 135 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 136 |
-
if pipe is None:
|
| 137 |
-
raise gr.Error("Whisper model not initialized properly!")
|
| 138 |
|
| 139 |
try:
|
| 140 |
logger.info("Transcribing audio...")
|
|
@@ -151,61 +117,60 @@ def analyze_with_llama(
|
|
| 151 |
ground_truth_impression: str,
|
| 152 |
max_new_tokens: int = 1024,
|
| 153 |
temperature: float = 0.6,
|
|
|
|
|
|
|
|
|
|
| 154 |
) -> Iterator[str]:
|
| 155 |
"""Analyze transcribed report against ground truth using Llama"""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
if llm is None or tokenizer is None:
|
| 159 |
-
raise gr.Error("Llama model not initialized properly!")
|
| 160 |
-
|
| 161 |
-
try:
|
| 162 |
-
task_prompt = f"""You are an expert radiologist. Compare the following transcribed radiology report with the ground truth and provide detailed feedback.
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
Ground Truth Impression:
|
| 171 |
-
{ground_truth_impression}
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
2. Completeness of report
|
| 176 |
-
3. Structure and clarity
|
| 177 |
-
4. Areas for improvement
|
| 178 |
-
|
| 179 |
-
Provide your analysis in a clear, structured format."""
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
do_sample=True,
|
| 195 |
-
temperature=temperature,
|
| 196 |
-
num_beams=1,
|
| 197 |
-
)
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
except Exception as e:
|
| 207 |
-
logger.error(f"Error in Llama analysis: {str(e)}")
|
| 208 |
-
raise gr.Error(f"Analysis failed: {str(e)}")
|
| 209 |
|
| 210 |
def load_random_case(hide_ground_truth):
|
| 211 |
try:
|
|
@@ -279,14 +244,18 @@ with gr.Blocks() as demo:
|
|
| 279 |
|
| 280 |
# Load case for comparison
|
| 281 |
load_case_btn = gr.Button("Load Random Case for Comparison")
|
|
|
|
| 282 |
local_ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
|
| 283 |
local_ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
|
| 284 |
|
| 285 |
with gr.Column():
|
| 286 |
# Editable transcription and analysis interface
|
| 287 |
edited_transcription = gr.Textbox(label="Edit Transcription", lines=10)
|
| 288 |
-
temperature_input = gr.Slider(label="Temperature", minimum=0.1, maximum=
|
|
|
|
|
|
|
| 289 |
max_tokens_input = gr.Slider(label="Max Tokens", minimum=256, maximum=2048, value=1024, step=128)
|
|
|
|
| 290 |
analyze_btn = gr.Button("Analyze with Llama")
|
| 291 |
llama_analysis_output = gr.Textbox(label="Llama Analysis Output", lines=15, interactive=False)
|
| 292 |
|
|
@@ -305,12 +274,11 @@ with gr.Blocks() as demo:
|
|
| 305 |
)
|
| 306 |
|
| 307 |
# Load case for local analysis
|
| 308 |
-
local_image_display = gr.Image(label="Chest X-ray Image", type="pil") # Add this line
|
| 309 |
load_case_btn.click(
|
| 310 |
fn=load_random_case,
|
| 311 |
inputs=[gr.Checkbox(value=False, visible=False)], # Hidden checkbox for hide_ground_truth
|
| 312 |
outputs=[
|
| 313 |
-
local_image_display,
|
| 314 |
local_ground_truth_findings,
|
| 315 |
local_ground_truth_impression,
|
| 316 |
gr.State(), # Hidden state
|
|
@@ -326,7 +294,10 @@ with gr.Blocks() as demo:
|
|
| 326 |
local_ground_truth_findings,
|
| 327 |
local_ground_truth_impression,
|
| 328 |
max_tokens_input,
|
| 329 |
-
temperature_input
|
|
|
|
|
|
|
|
|
|
| 330 |
],
|
| 331 |
outputs=llama_analysis_output
|
| 332 |
)
|
|
@@ -370,4 +341,4 @@ with gr.Blocks() as demo:
|
|
| 370 |
)
|
| 371 |
|
| 372 |
logger.info("Starting Gradio interface...")
|
| 373 |
-
demo.launch()
|
|
|
|
| 21 |
APP_VERSION = "1.0.0"
|
| 22 |
logger.info(f"Starting Radiology Teaching App v{APP_VERSION}")
|
| 23 |
|
| 24 |
+
# Model configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
| 26 |
BATCH_SIZE = 8
|
| 27 |
FILE_LIMIT_MB = 5000
|
| 28 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 29 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 30 |
|
| 31 |
+
# Initialize the LLM
|
| 32 |
+
if torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
llm_model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
|
| 34 |
+
llm = AutoModelForCausalLM.from_pretrained(llm_model_id, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
| 36 |
tokenizer.use_default_system_prompt = False
|
| 37 |
+
|
| 38 |
+
# Initialize the transcription pipeline
|
| 39 |
+
pipe = pipeline(
|
| 40 |
+
task="automatic-speech-recognition",
|
| 41 |
+
model=MODEL_NAME,
|
| 42 |
+
chunk_length_s=30,
|
| 43 |
+
device=device,
|
| 44 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
try:
|
| 47 |
# Load only 10 rows from the dataset
|
|
|
|
| 101 |
"""Transcribe audio using Whisper"""
|
| 102 |
if inputs is None:
|
| 103 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
|
|
|
|
| 104 |
|
| 105 |
try:
|
| 106 |
logger.info("Transcribing audio...")
|
|
|
|
| 117 |
ground_truth_impression: str,
|
| 118 |
max_new_tokens: int = 1024,
|
| 119 |
temperature: float = 0.6,
|
| 120 |
+
top_p: float = 0.9,
|
| 121 |
+
top_k: int = 50,
|
| 122 |
+
repetition_penalty: float = 1.2,
|
| 123 |
) -> Iterator[str]:
|
| 124 |
"""Analyze transcribed report against ground truth using Llama"""
|
| 125 |
+
task_prompt = f"""You are an expert radiologist. Compare the following transcribed radiology report with the ground truth and provide detailed feedback.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
Transcribed Report:
|
| 128 |
+
{transcribed_text}
|
| 129 |
|
| 130 |
+
Ground Truth Findings:
|
| 131 |
+
{ground_truth_findings}
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
Ground Truth Impression:
|
| 134 |
+
{ground_truth_impression}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
Please analyze:
|
| 137 |
+
1. Accuracy of findings
|
| 138 |
+
2. Completeness of report
|
| 139 |
+
3. Structure and clarity
|
| 140 |
+
4. Areas for improvement
|
| 141 |
+
|
| 142 |
+
Provide your analysis in a clear, structured format."""
|
| 143 |
|
| 144 |
+
conversation = [
|
| 145 |
+
{"role": "system", "content": "You are an expert radiologist providing detailed feedback."},
|
| 146 |
+
{"role": "user", "content": task_prompt}
|
| 147 |
+
]
|
| 148 |
|
| 149 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
| 150 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 151 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
| 152 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 153 |
+
input_ids = input_ids.to(llm.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 156 |
+
generate_kwargs = dict(
|
| 157 |
+
{"input_ids": input_ids},
|
| 158 |
+
streamer=streamer,
|
| 159 |
+
max_new_tokens=max_new_tokens,
|
| 160 |
+
do_sample=True,
|
| 161 |
+
top_p=top_p,
|
| 162 |
+
top_k=top_k,
|
| 163 |
+
temperature=temperature,
|
| 164 |
+
num_beams=1,
|
| 165 |
+
repetition_penalty=repetition_penalty,
|
| 166 |
+
)
|
| 167 |
+
t = Thread(target=llm.generate, kwargs=generate_kwargs)
|
| 168 |
+
t.start()
|
| 169 |
|
| 170 |
+
outputs = []
|
| 171 |
+
for text in streamer:
|
| 172 |
+
outputs.append(text)
|
| 173 |
+
yield "".join(outputs)
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def load_random_case(hide_ground_truth):
|
| 176 |
try:
|
|
|
|
| 244 |
|
| 245 |
# Load case for comparison
|
| 246 |
load_case_btn = gr.Button("Load Random Case for Comparison")
|
| 247 |
+
local_image_display = gr.Image(label="Chest X-ray Image", type="pil")
|
| 248 |
local_ground_truth_findings = gr.Textbox(label="Ground Truth Findings", lines=5, interactive=False)
|
| 249 |
local_ground_truth_impression = gr.Textbox(label="Ground Truth Impression", lines=5, interactive=False)
|
| 250 |
|
| 251 |
with gr.Column():
|
| 252 |
# Editable transcription and analysis interface
|
| 253 |
edited_transcription = gr.Textbox(label="Edit Transcription", lines=10)
|
| 254 |
+
temperature_input = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, value=0.6, step=0.1)
|
| 255 |
+
top_p_input = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, value=0.9, step=0.05)
|
| 256 |
+
top_k_input = gr.Slider(label="Top-k", minimum=1, maximum=1000, value=50, step=1)
|
| 257 |
max_tokens_input = gr.Slider(label="Max Tokens", minimum=256, maximum=2048, value=1024, step=128)
|
| 258 |
+
repetition_penalty_input = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, value=1.2, step=0.05)
|
| 259 |
analyze_btn = gr.Button("Analyze with Llama")
|
| 260 |
llama_analysis_output = gr.Textbox(label="Llama Analysis Output", lines=15, interactive=False)
|
| 261 |
|
|
|
|
| 274 |
)
|
| 275 |
|
| 276 |
# Load case for local analysis
|
|
|
|
| 277 |
load_case_btn.click(
|
| 278 |
fn=load_random_case,
|
| 279 |
inputs=[gr.Checkbox(value=False, visible=False)], # Hidden checkbox for hide_ground_truth
|
| 280 |
outputs=[
|
| 281 |
+
local_image_display,
|
| 282 |
local_ground_truth_findings,
|
| 283 |
local_ground_truth_impression,
|
| 284 |
gr.State(), # Hidden state
|
|
|
|
| 294 |
local_ground_truth_findings,
|
| 295 |
local_ground_truth_impression,
|
| 296 |
max_tokens_input,
|
| 297 |
+
temperature_input,
|
| 298 |
+
top_p_input,
|
| 299 |
+
top_k_input,
|
| 300 |
+
repetition_penalty_input
|
| 301 |
],
|
| 302 |
outputs=llama_analysis_output
|
| 303 |
)
|
|
|
|
| 341 |
)
|
| 342 |
|
| 343 |
logger.info("Starting Gradio interface...")
|
| 344 |
+
demo.queue().launch(ssr_mode=False)
|
requirements.txt
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
pandas>=2.0.0
|
| 3 |
datasets>=2.15.0
|
| 4 |
openai>=1.0.0
|
| 5 |
Pillow>=10.0.0
|
| 6 |
huggingface-hub>=0.20.0
|
| 7 |
-
|
| 8 |
-
transformers>=4.36.0
|
| 9 |
-
spaces>=0.19.3
|
| 10 |
-
accelerate>=0.27.0
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
gradio
|
| 3 |
+
torch
|
| 4 |
+
accelerate
|
| 5 |
+
SentencePiece
|
| 6 |
pandas>=2.0.0
|
| 7 |
datasets>=2.15.0
|
| 8 |
openai>=1.0.0
|
| 9 |
Pillow>=10.0.0
|
| 10 |
huggingface-hub>=0.20.0
|
| 11 |
+
spaces>=0.19.3
|
|
|
|
|
|
|
|
|