Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI, File, UploadFile | |
| from fastapi.responses import JSONResponse | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import torch | |
| from PIL import Image | |
| import io | |
| import os | |
| os.environ["HF_HOME"] = "/app/.cache" | |
| os.environ["HF_DATASETS_CACHE"] = "/app/.cache" | |
| os.environ["TRANSFORMERS_CACHE"] = "/app/.cache" | |
| app = FastAPI() | |
| MODEL_NAME = os.getenv("MODEL_NAME", "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, torch_dtype="auto", device_map="auto", trust_remote_code=True | |
| ) | |
| processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| async def analyze_image(file: UploadFile = File(...), prompt: str = "Describe this image."): | |
| image_bytes = await file.read() | |
| image = Image.open(io.BytesIO(image_bytes)) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": image}, | |
| {"type": "text", "text": prompt}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor( | |
| text=[text], | |
| images=[image], | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to(model.device) | |
| generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return JSONResponse(content={"result": output_text[0]}) | |