Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Commit 
							
							·
						
						722dd3b
	
1
								Parent(s):
							
							e24f073
								
Delete TTS/vocoder/models/fatchord_version.py
Browse files
    	
        TTS/vocoder/models/fatchord_version.py
    DELETED
    
    | 
         @@ -1,413 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            -
            from vocoder.distribution import sample_from_discretized_mix_logistic
         
     | 
| 5 | 
         
            -
            from vocoder.display import *
         
     | 
| 6 | 
         
            -
            from vocoder.audio import *
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            class ResBlock(nn.Module):
         
     | 
| 10 | 
         
            -
                def __init__(self, dims):
         
     | 
| 11 | 
         
            -
                    super().__init__()
         
     | 
| 12 | 
         
            -
                    self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
         
     | 
| 13 | 
         
            -
                    self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
         
     | 
| 14 | 
         
            -
                    self.batch_norm1 = nn.BatchNorm1d(dims)
         
     | 
| 15 | 
         
            -
                    self.batch_norm2 = nn.BatchNorm1d(dims)
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
                def forward(self, x):
         
     | 
| 18 | 
         
            -
                    residual = x
         
     | 
| 19 | 
         
            -
                    x = self.conv1(x)
         
     | 
| 20 | 
         
            -
                    x = self.batch_norm1(x)
         
     | 
| 21 | 
         
            -
                    x = F.relu(x)
         
     | 
| 22 | 
         
            -
                    x = self.conv2(x)
         
     | 
| 23 | 
         
            -
                    x = self.batch_norm2(x)
         
     | 
| 24 | 
         
            -
                    return x + residual
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            class MelResNet(nn.Module):
         
     | 
| 28 | 
         
            -
                def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
         
     | 
| 29 | 
         
            -
                    super().__init__()
         
     | 
| 30 | 
         
            -
                    k_size = pad * 2 + 1
         
     | 
| 31 | 
         
            -
                    self.conv_in = nn.Conv1d(in_dims, compute_dims, kernel_size=k_size, bias=False)
         
     | 
| 32 | 
         
            -
                    self.batch_norm = nn.BatchNorm1d(compute_dims)
         
     | 
| 33 | 
         
            -
                    self.layers = nn.ModuleList()
         
     | 
| 34 | 
         
            -
                    for i in range(res_blocks):
         
     | 
| 35 | 
         
            -
                        self.layers.append(ResBlock(compute_dims))
         
     | 
| 36 | 
         
            -
                    self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                def forward(self, x):
         
     | 
| 39 | 
         
            -
                    x = self.conv_in(x)
         
     | 
| 40 | 
         
            -
                    x = self.batch_norm(x)
         
     | 
| 41 | 
         
            -
                    x = F.relu(x)
         
     | 
| 42 | 
         
            -
                    for f in self.layers: x = f(x)
         
     | 
| 43 | 
         
            -
                    x = self.conv_out(x)
         
     | 
| 44 | 
         
            -
                    return x
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            class Stretch2d(nn.Module):
         
     | 
| 48 | 
         
            -
                def __init__(self, x_scale, y_scale):
         
     | 
| 49 | 
         
            -
                    super().__init__()
         
     | 
| 50 | 
         
            -
                    self.x_scale = x_scale
         
     | 
| 51 | 
         
            -
                    self.y_scale = y_scale
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
                def forward(self, x):
         
     | 
| 54 | 
         
            -
                    b, c, h, w = x.size()
         
     | 
| 55 | 
         
            -
                    x = x.unsqueeze(-1).unsqueeze(3)
         
     | 
| 56 | 
         
            -
                    x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
         
     | 
| 57 | 
         
            -
                    return x.view(b, c, h * self.y_scale, w * self.x_scale)
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
            class UpsampleNetwork(nn.Module):
         
     | 
| 61 | 
         
            -
                def __init__(self, feat_dims, upsample_scales, compute_dims,
         
     | 
| 62 | 
         
            -
                             res_blocks, res_out_dims, pad):
         
     | 
| 63 | 
         
            -
                    super().__init__()
         
     | 
| 64 | 
         
            -
                    total_scale = np.cumproduct(upsample_scales)[-1]
         
     | 
| 65 | 
         
            -
                    self.indent = pad * total_scale
         
     | 
| 66 | 
         
            -
                    self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
         
     | 
| 67 | 
         
            -
                    self.resnet_stretch = Stretch2d(total_scale, 1)
         
     | 
| 68 | 
         
            -
                    self.up_layers = nn.ModuleList()
         
     | 
| 69 | 
         
            -
                    for scale in upsample_scales:
         
     | 
| 70 | 
         
            -
                        k_size = (1, scale * 2 + 1)
         
     | 
| 71 | 
         
            -
                        padding = (0, scale)
         
     | 
| 72 | 
         
            -
                        stretch = Stretch2d(scale, 1)
         
     | 
| 73 | 
         
            -
                        conv = nn.Conv2d(1, 1, kernel_size=k_size, padding=padding, bias=False)
         
     | 
| 74 | 
         
            -
                        conv.weight.data.fill_(1. / k_size[1])
         
     | 
| 75 | 
         
            -
                        self.up_layers.append(stretch)
         
     | 
| 76 | 
         
            -
                        self.up_layers.append(conv)
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                def forward(self, m):
         
     | 
| 79 | 
         
            -
                    aux = self.resnet(m).unsqueeze(1)
         
     | 
| 80 | 
         
            -
                    aux = self.resnet_stretch(aux)
         
     | 
| 81 | 
         
            -
                    aux = aux.squeeze(1)
         
     | 
| 82 | 
         
            -
                    m = m.unsqueeze(1)
         
     | 
| 83 | 
         
            -
                    for f in self.up_layers: m = f(m)
         
     | 
| 84 | 
         
            -
                    m = m.squeeze(1)[:, :, self.indent:-self.indent]
         
     | 
| 85 | 
         
            -
                    return m.transpose(1, 2), aux.transpose(1, 2)
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            class WaveRNN(nn.Module):
         
     | 
| 89 | 
         
            -
                def __init__(self, rnn_dims, fc_dims, bits, pad, upsample_factors,
         
     | 
| 90 | 
         
            -
                             feat_dims, compute_dims, res_out_dims, res_blocks,
         
     | 
| 91 | 
         
            -
                             hop_length, sample_rate, mode='RAW'):
         
     | 
| 92 | 
         
            -
                    super().__init__()
         
     | 
| 93 | 
         
            -
                    self.mode = mode
         
     | 
| 94 | 
         
            -
                    self.pad = pad
         
     | 
| 95 | 
         
            -
                    if self.mode == 'RAW' :
         
     | 
| 96 | 
         
            -
                        self.n_classes = 2 ** bits
         
     | 
| 97 | 
         
            -
                    elif self.mode == 'MOL' :
         
     | 
| 98 | 
         
            -
                        self.n_classes = 30
         
     | 
| 99 | 
         
            -
                    else :
         
     | 
| 100 | 
         
            -
                        RuntimeError("Unknown model mode value - ", self.mode)
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                    self.rnn_dims = rnn_dims
         
     | 
| 103 | 
         
            -
                    self.aux_dims = res_out_dims // 4
         
     | 
| 104 | 
         
            -
                    self.hop_length = hop_length
         
     | 
| 105 | 
         
            -
                    self.sample_rate = sample_rate
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                    self.upsample = UpsampleNetwork(feat_dims, upsample_factors, compute_dims, res_blocks, res_out_dims, pad)
         
     | 
| 108 | 
         
            -
                    self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
         
     | 
| 109 | 
         
            -
                    self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
         
     | 
| 110 | 
         
            -
                    self.rnn2 = nn.GRU(rnn_dims + self.aux_dims, rnn_dims, batch_first=True)
         
     | 
| 111 | 
         
            -
                    self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
         
     | 
| 112 | 
         
            -
                    self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
         
     | 
| 113 | 
         
            -
                    self.fc3 = nn.Linear(fc_dims, self.n_classes)
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
                    self.step = nn.Parameter(torch.zeros(1).long(), requires_grad=False)
         
     | 
| 116 | 
         
            -
                    self.num_params()
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                def forward(self, x, mels):
         
     | 
| 119 | 
         
            -
                    self.step += 1
         
     | 
| 120 | 
         
            -
                    bsize = x.size(0)
         
     | 
| 121 | 
         
            -
                    h1 = torch.zeros(1, bsize, self.rnn_dims).cuda()
         
     | 
| 122 | 
         
            -
                    h2 = torch.zeros(1, bsize, self.rnn_dims).cuda()
         
     | 
| 123 | 
         
            -
                    mels, aux = self.upsample(mels)
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                    aux_idx = [self.aux_dims * i for i in range(5)]
         
     | 
| 126 | 
         
            -
                    a1 = aux[:, :, aux_idx[0]:aux_idx[1]]
         
     | 
| 127 | 
         
            -
                    a2 = aux[:, :, aux_idx[1]:aux_idx[2]]
         
     | 
| 128 | 
         
            -
                    a3 = aux[:, :, aux_idx[2]:aux_idx[3]]
         
     | 
| 129 | 
         
            -
                    a4 = aux[:, :, aux_idx[3]:aux_idx[4]]
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                    x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
         
     | 
| 132 | 
         
            -
                    x = self.I(x)
         
     | 
| 133 | 
         
            -
                    res = x
         
     | 
| 134 | 
         
            -
                    x, _ = self.rnn1(x, h1)
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                    x = x + res
         
     | 
| 137 | 
         
            -
                    res = x
         
     | 
| 138 | 
         
            -
                    x = torch.cat([x, a2], dim=2)
         
     | 
| 139 | 
         
            -
                    x, _ = self.rnn2(x, h2)
         
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
                    x = x + res
         
     | 
| 142 | 
         
            -
                    x = torch.cat([x, a3], dim=2)
         
     | 
| 143 | 
         
            -
                    x = F.relu(self.fc1(x))
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
                    x = torch.cat([x, a4], dim=2)
         
     | 
| 146 | 
         
            -
                    x = F.relu(self.fc2(x))
         
     | 
| 147 | 
         
            -
                    return self.fc3(x)
         
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
                def generate(self, mels, batched, target, overlap, mu_law, progress_callback=None):
         
     | 
| 150 | 
         
            -
                    mu_law = mu_law if self.mode == 'RAW' else False
         
     | 
| 151 | 
         
            -
                    progress_callback = progress_callback or self.gen_display
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                    self.eval()
         
     | 
| 154 | 
         
            -
                    output = []
         
     | 
| 155 | 
         
            -
                    start = time.time()
         
     | 
| 156 | 
         
            -
                    rnn1 = self.get_gru_cell(self.rnn1)
         
     | 
| 157 | 
         
            -
                    rnn2 = self.get_gru_cell(self.rnn2)
         
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
                    with torch.no_grad():
         
     | 
| 160 | 
         
            -
                        mels = mels.cuda()
         
     | 
| 161 | 
         
            -
                        wave_len = (mels.size(-1) - 1) * self.hop_length
         
     | 
| 162 | 
         
            -
                        mels = self.pad_tensor(mels.transpose(1, 2), pad=self.pad, side='both')
         
     | 
| 163 | 
         
            -
                        mels, aux = self.upsample(mels.transpose(1, 2))
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
                        if batched:
         
     | 
| 166 | 
         
            -
                            mels = self.fold_with_overlap(mels, target, overlap)
         
     | 
| 167 | 
         
            -
                            aux = self.fold_with_overlap(aux, target, overlap)
         
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
                        b_size, seq_len, _ = mels.size()
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
                        h1 = torch.zeros(b_size, self.rnn_dims).cuda()
         
     | 
| 172 | 
         
            -
                        h2 = torch.zeros(b_size, self.rnn_dims).cuda()
         
     | 
| 173 | 
         
            -
                        x = torch.zeros(b_size, 1).cuda()
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                        d = self.aux_dims
         
     | 
| 176 | 
         
            -
                        aux_split = [aux[:, :, d * i:d * (i + 1)] for i in range(4)]
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                        for i in range(seq_len):
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                            m_t = mels[:, i, :]
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
                            a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                            x = torch.cat([x, m_t, a1_t], dim=1)
         
     | 
| 185 | 
         
            -
                            x = self.I(x)
         
     | 
| 186 | 
         
            -
                            h1 = rnn1(x, h1)
         
     | 
| 187 | 
         
            -
             
     | 
| 188 | 
         
            -
                            x = x + h1
         
     | 
| 189 | 
         
            -
                            inp = torch.cat([x, a2_t], dim=1)
         
     | 
| 190 | 
         
            -
                            h2 = rnn2(inp, h2)
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
                            x = x + h2
         
     | 
| 193 | 
         
            -
                            x = torch.cat([x, a3_t], dim=1)
         
     | 
| 194 | 
         
            -
                            x = F.relu(self.fc1(x))
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
                            x = torch.cat([x, a4_t], dim=1)
         
     | 
| 197 | 
         
            -
                            x = F.relu(self.fc2(x))
         
     | 
| 198 | 
         
            -
             
     | 
| 199 | 
         
            -
                            logits = self.fc3(x)
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
                            if self.mode == 'MOL':
         
     | 
| 202 | 
         
            -
                                sample = sample_from_discretized_mix_logistic(logits.unsqueeze(0).transpose(1, 2))
         
     | 
| 203 | 
         
            -
                                output.append(sample.view(-1))
         
     | 
| 204 | 
         
            -
                                # x = torch.FloatTensor([[sample]]).cuda()
         
     | 
| 205 | 
         
            -
                                x = sample.transpose(0, 1).cuda()
         
     | 
| 206 | 
         
            -
             
     | 
| 207 | 
         
            -
                            elif self.mode == 'RAW' :
         
     | 
| 208 | 
         
            -
                                posterior = F.softmax(logits, dim=1)
         
     | 
| 209 | 
         
            -
                                distrib = torch.distributions.Categorical(posterior)
         
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
                                sample = 2 * distrib.sample().float() / (self.n_classes - 1.) - 1.
         
     | 
| 212 | 
         
            -
                                output.append(sample)
         
     | 
| 213 | 
         
            -
                                x = sample.unsqueeze(-1)
         
     | 
| 214 | 
         
            -
                            else:
         
     | 
| 215 | 
         
            -
                                raise RuntimeError("Unknown model mode value - ", self.mode)
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                            if i % 100 == 0:
         
     | 
| 218 | 
         
            -
                                gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
         
     | 
| 219 | 
         
            -
                                progress_callback(i, seq_len, b_size, gen_rate)
         
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
                    output = torch.stack(output).transpose(0, 1)
         
     | 
| 222 | 
         
            -
                    output = output.cpu().numpy()
         
     | 
| 223 | 
         
            -
                    output = output.astype(np.float64)
         
     | 
| 224 | 
         
            -
                    
         
     | 
| 225 | 
         
            -
                    if batched:
         
     | 
| 226 | 
         
            -
                        output = self.xfade_and_unfold(output, target, overlap)
         
     | 
| 227 | 
         
            -
                    else:
         
     | 
| 228 | 
         
            -
                        output = output[0]
         
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
                    if mu_law:
         
     | 
| 231 | 
         
            -
                        output = decode_mu_law(output, self.n_classes, False)
         
     | 
| 232 | 
         
            -
                    if hp.apply_preemphasis:
         
     | 
| 233 | 
         
            -
                        output = de_emphasis(output)
         
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
                    # Fade-out at the end to avoid signal cutting out suddenly
         
     | 
| 236 | 
         
            -
                    fade_out = np.linspace(1, 0, 20 * self.hop_length)
         
     | 
| 237 | 
         
            -
                    output = output[:wave_len]
         
     | 
| 238 | 
         
            -
                    output[-20 * self.hop_length:] *= fade_out
         
     | 
| 239 | 
         
            -
                    
         
     | 
| 240 | 
         
            -
                    self.train()
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                    return output
         
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
                def gen_display(self, i, seq_len, b_size, gen_rate):
         
     | 
| 246 | 
         
            -
                    pbar = progbar(i, seq_len)
         
     | 
| 247 | 
         
            -
                    msg = f'| {pbar} {i*b_size}/{seq_len*b_size} | Batch Size: {b_size} | Gen Rate: {gen_rate:.1f}kHz | '
         
     | 
| 248 | 
         
            -
                    stream(msg)
         
     | 
| 249 | 
         
            -
             
     | 
| 250 | 
         
            -
                def get_gru_cell(self, gru):
         
     | 
| 251 | 
         
            -
                    gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
         
     | 
| 252 | 
         
            -
                    gru_cell.weight_hh.data = gru.weight_hh_l0.data
         
     | 
| 253 | 
         
            -
                    gru_cell.weight_ih.data = gru.weight_ih_l0.data
         
     | 
| 254 | 
         
            -
                    gru_cell.bias_hh.data = gru.bias_hh_l0.data
         
     | 
| 255 | 
         
            -
                    gru_cell.bias_ih.data = gru.bias_ih_l0.data
         
     | 
| 256 | 
         
            -
                    return gru_cell
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
                def pad_tensor(self, x, pad, side='both'):
         
     | 
| 259 | 
         
            -
                    # NB - this is just a quick method i need right now
         
     | 
| 260 | 
         
            -
                    # i.e., it won't generalise to other shapes/dims
         
     | 
| 261 | 
         
            -
                    b, t, c = x.size()
         
     | 
| 262 | 
         
            -
                    total = t + 2 * pad if side == 'both' else t + pad
         
     | 
| 263 | 
         
            -
                    padded = torch.zeros(b, total, c).cuda()
         
     | 
| 264 | 
         
            -
                    if side == 'before' or side == 'both':
         
     | 
| 265 | 
         
            -
                        padded[:, pad:pad + t, :] = x
         
     | 
| 266 | 
         
            -
                    elif side == 'after':
         
     | 
| 267 | 
         
            -
                        padded[:, :t, :] = x
         
     | 
| 268 | 
         
            -
                    return padded
         
     | 
| 269 | 
         
            -
             
     | 
| 270 | 
         
            -
                def fold_with_overlap(self, x, target, overlap):
         
     | 
| 271 | 
         
            -
             
     | 
| 272 | 
         
            -
                    ''' Fold the tensor with overlap for quick batched inference.
         
     | 
| 273 | 
         
            -
                        Overlap will be used for crossfading in xfade_and_unfold()
         
     | 
| 274 | 
         
            -
             
     | 
| 275 | 
         
            -
                    Args:
         
     | 
| 276 | 
         
            -
                        x (tensor)    : Upsampled conditioning features.
         
     | 
| 277 | 
         
            -
                                        shape=(1, timesteps, features)
         
     | 
| 278 | 
         
            -
                        target (int)  : Target timesteps for each index of batch
         
     | 
| 279 | 
         
            -
                        overlap (int) : Timesteps for both xfade and rnn warmup
         
     | 
| 280 | 
         
            -
             
     | 
| 281 | 
         
            -
                    Return:
         
     | 
| 282 | 
         
            -
                        (tensor) : shape=(num_folds, target + 2 * overlap, features)
         
     | 
| 283 | 
         
            -
             
     | 
| 284 | 
         
            -
                    Details:
         
     | 
| 285 | 
         
            -
                        x = [[h1, h2, ... hn]]
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
                        Where each h is a vector of conditioning features
         
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
                        Eg: target=2, overlap=1 with x.size(1)=10
         
     | 
| 290 | 
         
            -
             
     | 
| 291 | 
         
            -
                        folded = [[h1, h2, h3, h4],
         
     | 
| 292 | 
         
            -
                                  [h4, h5, h6, h7],
         
     | 
| 293 | 
         
            -
                                  [h7, h8, h9, h10]]
         
     | 
| 294 | 
         
            -
                    '''
         
     | 
| 295 | 
         
            -
             
     | 
| 296 | 
         
            -
                    _, total_len, features = x.size()
         
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
                    # Calculate variables needed
         
     | 
| 299 | 
         
            -
                    num_folds = (total_len - overlap) // (target + overlap)
         
     | 
| 300 | 
         
            -
                    extended_len = num_folds * (overlap + target) + overlap
         
     | 
| 301 | 
         
            -
                    remaining = total_len - extended_len
         
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
                    # Pad if some time steps poking out
         
     | 
| 304 | 
         
            -
                    if remaining != 0:
         
     | 
| 305 | 
         
            -
                        num_folds += 1
         
     | 
| 306 | 
         
            -
                        padding = target + 2 * overlap - remaining
         
     | 
| 307 | 
         
            -
                        x = self.pad_tensor(x, padding, side='after')
         
     | 
| 308 | 
         
            -
             
     | 
| 309 | 
         
            -
                    folded = torch.zeros(num_folds, target + 2 * overlap, features).cuda()
         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
                    # Get the values for the folded tensor
         
     | 
| 312 | 
         
            -
                    for i in range(num_folds):
         
     | 
| 313 | 
         
            -
                        start = i * (target + overlap)
         
     | 
| 314 | 
         
            -
                        end = start + target + 2 * overlap
         
     | 
| 315 | 
         
            -
                        folded[i] = x[:, start:end, :]
         
     | 
| 316 | 
         
            -
             
     | 
| 317 | 
         
            -
                    return folded
         
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
                def xfade_and_unfold(self, y, target, overlap):
         
     | 
| 320 | 
         
            -
             
     | 
| 321 | 
         
            -
                    ''' Applies a crossfade and unfolds into a 1d array.
         
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
                    Args:
         
     | 
| 324 | 
         
            -
                        y (ndarry)    : Batched sequences of audio samples
         
     | 
| 325 | 
         
            -
                                        shape=(num_folds, target + 2 * overlap)
         
     | 
| 326 | 
         
            -
                                        dtype=np.float64
         
     | 
| 327 | 
         
            -
                        overlap (int) : Timesteps for both xfade and rnn warmup
         
     | 
| 328 | 
         
            -
             
     | 
| 329 | 
         
            -
                    Return:
         
     | 
| 330 | 
         
            -
                        (ndarry) : audio samples in a 1d array
         
     | 
| 331 | 
         
            -
                                   shape=(total_len)
         
     | 
| 332 | 
         
            -
                                   dtype=np.float64
         
     | 
| 333 | 
         
            -
             
     | 
| 334 | 
         
            -
                    Details:
         
     | 
| 335 | 
         
            -
                        y = [[seq1],
         
     | 
| 336 | 
         
            -
                             [seq2],
         
     | 
| 337 | 
         
            -
                             [seq3]]
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
                        Apply a gain envelope at both ends of the sequences
         
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
                        y = [[seq1_in, seq1_target, seq1_out],
         
     | 
| 342 | 
         
            -
                             [seq2_in, seq2_target, seq2_out],
         
     | 
| 343 | 
         
            -
                             [seq3_in, seq3_target, seq3_out]]
         
     | 
| 344 | 
         
            -
             
     | 
| 345 | 
         
            -
                        Stagger and add up the groups of samples:
         
     | 
| 346 | 
         
            -
             
     | 
| 347 | 
         
            -
                        [seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
         
     | 
| 348 | 
         
            -
             
     | 
| 349 | 
         
            -
                    '''
         
     | 
| 350 | 
         
            -
             
     | 
| 351 | 
         
            -
                    num_folds, length = y.shape
         
     | 
| 352 | 
         
            -
                    target = length - 2 * overlap
         
     | 
| 353 | 
         
            -
                    total_len = num_folds * (target + overlap) + overlap
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                    # Need some silence for the rnn warmup
         
     | 
| 356 | 
         
            -
                    silence_len = overlap // 2
         
     | 
| 357 | 
         
            -
                    fade_len = overlap - silence_len
         
     | 
| 358 | 
         
            -
                    silence = np.zeros((silence_len), dtype=np.float64)
         
     | 
| 359 | 
         
            -
             
     | 
| 360 | 
         
            -
                    # Equal power crossfade
         
     | 
| 361 | 
         
            -
                    t = np.linspace(-1, 1, fade_len, dtype=np.float64)
         
     | 
| 362 | 
         
            -
                    fade_in = np.sqrt(0.5 * (1 + t))
         
     | 
| 363 | 
         
            -
                    fade_out = np.sqrt(0.5 * (1 - t))
         
     | 
| 364 | 
         
            -
             
     | 
| 365 | 
         
            -
                    # Concat the silence to the fades
         
     | 
| 366 | 
         
            -
                    fade_in = np.concatenate([silence, fade_in])
         
     | 
| 367 | 
         
            -
                    fade_out = np.concatenate([fade_out, silence])
         
     | 
| 368 | 
         
            -
             
     | 
| 369 | 
         
            -
                    # Apply the gain to the overlap samples
         
     | 
| 370 | 
         
            -
                    y[:, :overlap] *= fade_in
         
     | 
| 371 | 
         
            -
                    y[:, -overlap:] *= fade_out
         
     | 
| 372 | 
         
            -
             
     | 
| 373 | 
         
            -
                    unfolded = np.zeros((total_len), dtype=np.float64)
         
     | 
| 374 | 
         
            -
             
     | 
| 375 | 
         
            -
                    # Loop to add up all the samples
         
     | 
| 376 | 
         
            -
                    for i in range(num_folds):
         
     | 
| 377 | 
         
            -
                        start = i * (target + overlap)
         
     | 
| 378 | 
         
            -
                        end = start + target + 2 * overlap
         
     | 
| 379 | 
         
            -
                        unfolded[start:end] += y[i]
         
     | 
| 380 | 
         
            -
             
     | 
| 381 | 
         
            -
                    return unfolded
         
     | 
| 382 | 
         
            -
             
     | 
| 383 | 
         
            -
                def get_step(self) :
         
     | 
| 384 | 
         
            -
                    return self.step.data.item()
         
     | 
| 385 | 
         
            -
             
     | 
| 386 | 
         
            -
                def checkpoint(self, model_dir, optimizer) :
         
     | 
| 387 | 
         
            -
                    k_steps = self.get_step() // 1000
         
     | 
| 388 | 
         
            -
                    self.save(model_dir.joinpath("checkpoint_%dk_steps.pt" % k_steps), optimizer)
         
     | 
| 389 | 
         
            -
             
     | 
| 390 | 
         
            -
                def log(self, path, msg) :
         
     | 
| 391 | 
         
            -
                    with open(path, 'a') as f:
         
     | 
| 392 | 
         
            -
                        print(msg, file=f)
         
     | 
| 393 | 
         
            -
             
     | 
| 394 | 
         
            -
                def load(self, path, optimizer) :
         
     | 
| 395 | 
         
            -
                    checkpoint = torch.load(path)
         
     | 
| 396 | 
         
            -
                    if "optimizer_state" in checkpoint:
         
     | 
| 397 | 
         
            -
                        self.load_state_dict(checkpoint["model_state"])
         
     | 
| 398 | 
         
            -
                        optimizer.load_state_dict(checkpoint["optimizer_state"])
         
     | 
| 399 | 
         
            -
                    else:
         
     | 
| 400 | 
         
            -
                        # Backwards compatibility
         
     | 
| 401 | 
         
            -
                        self.load_state_dict(checkpoint)
         
     | 
| 402 | 
         
            -
             
     | 
| 403 | 
         
            -
                def save(self, path, optimizer) :
         
     | 
| 404 | 
         
            -
                    torch.save({
         
     | 
| 405 | 
         
            -
                        "model_state": self.state_dict(),
         
     | 
| 406 | 
         
            -
                        "optimizer_state": optimizer.state_dict(),
         
     | 
| 407 | 
         
            -
                    }, path)
         
     | 
| 408 | 
         
            -
             
     | 
| 409 | 
         
            -
                def num_params(self, print_out=True):
         
     | 
| 410 | 
         
            -
                    parameters = filter(lambda p: p.requires_grad, self.parameters())
         
     | 
| 411 | 
         
            -
                    parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
         
     | 
| 412 | 
         
            -
                    if print_out :
         
     | 
| 413 | 
         
            -
                        print('Trainable Parameters: %.3fM' % parameters)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |