Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| DESCRIPTION = """\ | |
| # EvaByte [Byte-Level LLM] | |
| EvaByte is a efficient byte-level language model with multibyte prediction and EVA attention, built by the University of Hong Kong and SambaNova Systems. | |
| This Space is an unofficial demo of the instruction-tuned version [EvaByte/EvaByte-SFT](https://huggingface.co/EvaByte/EvaByte-SFT). | |
| For full details on architecture, training recipe, and benchmarks, see their blog post and the project repository: | |
| - Blog: <https://hkunlp.github.io/blog/2025/evabyte> | |
| - GitHub: <https://github.com/OpenEvaByte/evabyte> | |
| If you liked this Space, follow me on Twitter: [@KantaHayashiAI](https://x.com/KantaHayashiAI) | |
| """ | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = 32000 | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| tokenizer = AutoTokenizer.from_pretrained("EvaByte/EvaByte-SFT", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "EvaByte/EvaByte-SFT", | |
| torch_dtype=torch.bfloat16, | |
| trust_remote_code=True, | |
| ).eval().to(device) | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| ) -> str: | |
| conversation = [*chat_history, {"role": "user", "content": message}] | |
| input_ids = tokenizer.apply_chat_template( | |
| conversation, | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ) | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning( | |
| f"Trimmed input to the last {MAX_INPUT_TOKEN_LENGTH} tokens because it exceeded the limit." | |
| ) | |
| input_ids = input_ids.to(model.device) | |
| output_ids = model.multi_byte_generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| temperature=temperature, | |
| ) | |
| generated_segment = output_ids[0][input_ids.shape[1]:] | |
| return tokenizer.decode(generated_segment, skip_special_tokens=True) | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=1.0, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[["Write me an English pangram."]], | |
| cache_examples=False, | |
| type="messages", | |
| description=DESCRIPTION, | |
| fill_height=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |