File size: 20,140 Bytes
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb27406
 
 
 
 
 
 
 
 
 
8dad38d
fb27406
 
be01e15
 
 
 
 
 
8dad38d
 
be01e15
 
 
 
 
 
 
 
 
 
fb27406
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3f707
 
 
 
 
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3f707
be01e15
 
 
 
 
 
 
 
 
 
1d3f707
 
 
 
 
 
 
be01e15
 
 
 
 
 
 
 
 
 
 
be0801e
be01e15
be0801e
 
be01e15
 
 
 
 
 
be0801e
 
 
 
 
 
 
 
 
 
be01e15
 
 
 
 
 
 
 
 
 
 
 
1d3f707
 
 
 
 
 
 
be01e15
1d3f707
be01e15
 
 
 
 
 
 
 
1d3f707
 
 
 
 
be01e15
47ca460
be01e15
 
 
 
1ca74e3
be0801e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca74e3
 
 
 
 
 
be01e15
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# evaluate.py

import os
import json
import time
import re  # <-- ADD THIS IMPORT
import pandas as pd
from typing import List, Dict, Any
from pathlib import Path

# --- Imports from the main application ---
# In evaluate.py

try:
    from alz_companion.agent import (
        make_rag_chain, route_query_type, detect_tags_from_query,
        answer_query, call_llm, build_or_load_vectorstore
    )
    from alz_companion.prompts import FAITHFULNESS_JUDGE_PROMPT
    from langchain_community.vectorstores import FAISS
    # --- Also move this import inside the try block for consistency ---
    from langchain.schema import Document

except ImportError:
    # --- START: FALLBACK DEFINITIONS ---
    class FAISS:
        def __init__(self): self.docstore = type('obj', (object,), {'_dict': {}})()
        def add_documents(self, docs): pass
        def save_local(self, path): pass
        @classmethod
        def from_documents(cls, docs, embeddings=None): return cls()

    class Document:
        def __init__(self, page_content, metadata=None):
            self.page_content = page_content
            self.metadata = metadata or {}

    def make_rag_chain(*args, **kwargs): return lambda q, **k: {"answer": f"(Eval Fallback) You asked: {q}", "sources": []}
    def route_query_type(q, **kwargs): return "general_conversation"
    def detect_tags_from_query(*args, **kwargs): return {}
    def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
    def call_llm(*args, **kwargs): return "{}"
    
    # --- ADD FALLBACK DEFINITION FOR THE MISSING FUNCTION ---
    def build_or_load_vectorstore(docs, index_path, is_personal=False):
        return FAISS()
    # --- END OF ADDITION ---

    FAITHFULNESS_JUDGE_PROMPT = ""
    print("WARNING: Could not import from alz_companion. Evaluation functions will use fallbacks.")
    # --- END: FALLBACK DEFINITIONS ---
    

# --- LLM-as-a-Judge Prompt for Answer Correctness ---
ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess the factual correctness of a generated answer against a ground truth answer.

- GROUND_TRUTH_ANSWER: This is the gold-standard, correct answer.
- GENERATED_ANSWER: This is the answer produced by the AI model.

Evaluate if the GENERATED_ANSWER is factually aligned with the GROUND_TRUTH_ANSWER. Ignore minor differences in phrasing, tone, or structure. The key is factual accuracy.

Respond with a single JSON object containing a float score from 0.0 to 1.0.
- 1.0: The generated answer is factually correct and aligns perfectly with the ground truth.
- 0.5: The generated answer is partially correct but misses key information or contains minor inaccuracies.
- 0.0: The generated answer is factually incorrect or contradicts the ground truth.

--- DATA TO EVALUATE ---
GROUND_TRUTH_ANSWER:
{ground_truth_answer}

GENERATED_ANSWER:
{generated_answer}
---

Return a single JSON object with your score:
{{
  "correctness_score": <float>
}}
"""

test_fixtures = []

def load_test_fixtures():
    """Loads fixtures into the test_fixtures list."""
    global test_fixtures
    test_fixtures = []
    env_path = os.environ.get("TEST_FIXTURES_PATH", "").strip()

    # --- START: DEFINITIVE FIX ---
    # The old code used a relative path, which is unreliable.
    # This new code builds an absolute path to the fixture file based on
    # the location of this (evaluate.py) script.
    script_dir = Path(__file__).parent
    default_fixture_file = script_dir / "small_test_cases_v10.jsonl"

    candidates = [env_path] if env_path else [str(default_fixture_file)]
    # --- END: DEFINITIVE FIX ---
    # candidates = [env_path] if env_path else ["conversation_test_fixtures_v10.jsonl"]
    # candidates = [env_path] if env_path else ["small_test_cases_v10.jsonl"]
    
    path = next((p for p in candidates if p and os.path.exists(p)), None)
    if not path:
        print("Warning: No test fixtures file found for evaluation.")
        return
    
    # Use the corrected v10 file if available
    # if "conversation_test_fixtures_v10.jsonl" in path:
    if "small_test_cases_v10.jsonl" in path:
        print(f"Using corrected test fixtures: {path}")

    with open(path, "r", encoding="utf-8") as f:
        for line in f:
            try:
                test_fixtures.append(json.loads(line))
            except json.JSONDecodeError:
                print(f"Skipping malformed JSON line in {path}")
    print(f"Loaded {len(test_fixtures)} fixtures for evaluation from {path}")

    
def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]:
    lookup_key = expected_key_override or tag_key
    expected_raw = expected.get(lookup_key, [])
    expected_set = set(expected_raw if isinstance(expected_raw, list) else [expected_raw]) if expected_raw and expected_raw != "None" else set()
    actual_raw = actual.get(tag_key, [])
    actual_set = set(actual_raw if isinstance(actual_raw, list) else [actual_raw]) if actual_raw and actual_raw != "None" else set()
    if not expected_set and not actual_set:
        return {"precision": 1.0, "recall": 1.0, "f1_score": 1.0}
    true_positives = len(expected_set.intersection(actual_set))
    precision = true_positives / len(actual_set) if actual_set else 0.0
    recall = true_positives / len(expected_set) if expected_set else 0.0
    f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
    return {"precision": precision, "recall": recall, "f1_score": f1_score}

def _parse_judge_json(raw_str: str) -> dict | None:
    try:
        start_brace = raw_str.find('{')
        end_brace = raw_str.rfind('}')
        if start_brace != -1 and end_brace > start_brace:
            json_str = raw_str[start_brace : end_brace + 1]
            return json.loads(json_str)
        return None
    except (json.JSONDecodeError, AttributeError):
        return None

# --- NEW: helpers for categorisation and error-class labelling ---
def _categorize_test(test_id: str) -> str:
    tid = (test_id or "").lower()
    if "synonym" in tid: return "synonym"
    if "multi_fact" in tid or "multi-hop" in tid or "multihop" in tid: return "multi_fact"
    if "omission" in tid: return "omission"
    if "hallucination" in tid: return "hallucination"
    if "time" in tid or "temporal" in tid: return "temporal"
    if "context" in tid: return "context_disambig"
    return "baseline"

def _classify_error(gt: str, gen: str) -> str:
    import re
    gt = (gt or "").strip().lower()
    gen = (gen or "").strip().lower()
    if not gen:
        return "empty"
    if not gt:
        return "hallucination" if gen else "empty"
    if gt in gen:
        return "paraphrase"
    gt_tokens = set([t for t in re.split(r'\W+', gt) if t])
    gen_tokens = set([t for t in re.split(r'\W+', gen) if t])
    overlap = len(gt_tokens & gen_tokens) / max(1, len(gt_tokens))
    if overlap >= 0.3:
        return "omission"
    return "contradiction"

## NEW
# In evaluate.py
def run_comprehensive_evaluation(
    vs_general: FAISS,
    vs_personal: FAISS,
    nlu_vectorstore: FAISS,
    config: Dict[str, Any],
    storage_path: Path  # <-- ADD THIS PARAMETER
):
    global test_fixtures
    if not test_fixtures:
        # The return signature is now back to 3 items.
        return "No test fixtures loaded.", [], []

    vs_personal_test = None
    personal_context_docs = []
    personal_context_file = "sample_data/1 Complaints of a Dutiful Daughter.txt"

    if os.path.exists(personal_context_file):
        print(f"Found personal context file for evaluation: '{personal_context_file}'")
        with open(personal_context_file, "r", encoding="utf-8") as f:
            content = f.read()
            doc = Document(page_content=content, metadata={"source": os.path.basename(personal_context_file)})
            personal_context_docs.append(doc)
    else:
        print(f"WARNING: Personal context file not found at '{personal_context_file}'. Factual tests will likely fail.")

    vs_personal_test = build_or_load_vectorstore(
        personal_context_docs,
        index_path="tmp/eval_personal_index",
        is_personal=True
    )
    print(f"Successfully created temporary personal vectorstore with {len(personal_context_docs)} document(s) for this evaluation run.")
    
    def _norm(label: str) -> str:
        label = (label or "").strip().lower()
        return "factual_question" if "factual" in label else label
    
    print("Starting comprehensive evaluation...")
    results: List[Dict[str, Any]] = []
    total_fixtures = len(test_fixtures)
    print(f"\nπŸš€ STARTING EVALUATION on {total_fixtures} test cases...")

    for i, fx in enumerate(test_fixtures):
        test_id = fx.get("test_id", "N/A")
        print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
        
        turns = fx.get("turns") or []
        api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
        query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
        if not query: continue

        print(f'Query: "{query}"')
    
        ground_truth = fx.get("ground_truth", {})
        expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
        expected_tags = ground_truth.get("expected_tags", {})
        actual_route = _norm(route_query_type(query))
        route_correct = (actual_route == expected_route)
        
        actual_tags: Dict[str, Any] = {}
        if "caregiving_scenario" in actual_route:
            actual_tags = detect_tags_from_query(
                query, nlu_vectorstore=nlu_vectorstore,
                behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
                topic_options=config["topic_tags"], context_options=config["context_tags"],
            )

        behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors")
        emotion_metrics  = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion")
        topic_metrics    = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics")
        context_metrics  = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts")

        final_tags = {}
        if "caregiving_scenario" in actual_route:
            final_tags = {
                "scenario_tag": (actual_tags.get("detected_behaviors") or [None])[0],
                "emotion_tag":  actual_tags.get("detected_emotion"),
                "topic_tag": (actual_tags.get("detected_topics") or [None])[0],
                "context_tags": actual_tags.get("detected_contexts", [])
            }
        
        current_test_role = fx.get("test_role", "patient")
        rag_chain = make_rag_chain(
            vs_general, 
            vs_personal, 
            role=current_test_role, 
            for_evaluation=True
        )
        
        t0 = time.time()
        response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
        latency_ms = round((time.time() - t0) * 1000.0, 1)
        answer_text = response.get("answer", "ERROR")
        ground_truth_answer = ground_truth.get("ground_truth_answer")

        category = _categorize_test(test_id)
        error_class = _classify_error(ground_truth_answer, answer_text)
        
        expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
        raw_sources = response.get("sources", [])
        actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))

        print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
        print(f"  - Expected: {sorted(list(expected_sources_set))}")
        print(f"  - Actual:   {sorted(list(actual_sources_set))}")
        
        true_positives = expected_sources_set.intersection(actual_sources_set)
        false_positives = actual_sources_set - expected_sources_set
        false_negatives = expected_sources_set - actual_sources_set    

        if not false_positives and not false_negatives:
            print("  - Result: βœ… Perfect Match!")
        else:
            if false_positives:
                print(f"  - πŸ”» False Positives (hurts precision): {sorted(list(false_positives))}")
            if false_negatives:
                print(f"  - πŸ”» False Negatives (hurts recall):    {sorted(list(false_negatives))}")
        print("-"*59 + "\n")

        context_precision, context_recall = 0.0, 0.0
        if expected_sources_set or actual_sources_set:
            tp = len(expected_sources_set.intersection(actual_sources_set))
            if len(actual_sources_set) > 0: context_precision = tp / len(actual_sources_set)
            if len(expected_sources_set) > 0: context_recall = tp / len(expected_sources_set)
        elif not expected_sources_set and not actual_sources_set:
            context_precision, context_recall = 1.0, 1.0

        # TURN DEBUG on Answer Correctness
        # print("\n" + "-"*20 + " ANSWER & CORRECTNESS EVALUATION " + "-"*20)
        # print(f"  - Ground Truth Answer: {ground_truth_answer}")
        # print(f"  - Generated Answer:    {answer_text}")
        # print("-" * 59)
        
        answer_correctness_score = None
        if ground_truth_answer and "ERROR" not in answer_text:
            try:
                judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
                print(f"  - Judge Prompt Sent:\n{judge_msg}")
                raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
                print(f"  - Judge Raw Response: {raw_correctness}")
                correctness_data = _parse_judge_json(raw_correctness)
                if correctness_data and "correctness_score" in correctness_data:
                    answer_correctness_score = float(correctness_data["correctness_score"])
                    print(f"  - Final Score: {answer_correctness_score}")
            except Exception as e:
                print(f"ERROR during answer correctness judging: {e}")

        faithfulness = None
        hallucination_rate = None
        source_docs = response.get("source_documents", [])
        if source_docs and "ERROR" not in answer_text:
            context_blob = "\n---\n".join([doc.page_content for doc in source_docs])
            judge_msg = FAITHFULNESS_JUDGE_PROMPT.format(query=query, answer=answer_text, sources=context_blob)
            try:
                if context_blob.strip():
                    raw = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
                    data = _parse_judge_json(raw)
                    if data:
                        denom = data.get("supported", 0) + data.get("contradicted", 0) + data.get("not_enough_info", 0)
                        if denom > 0: 
                            faithfulness = round(data.get("supported", 0) / denom, 3)
                            hallucination_rate = 1.0 - faithfulness
                        elif data.get("ignored", 0) > 0: 
                            faithfulness = 1.0
                            hallucination_rate = 0.0
                            
            except Exception as e:
                print(f"ERROR during faithfulness judging: {e}")

        sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
        results.append({
            "test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
            "route_correct": "βœ…" if route_correct else "❌", "expected_route": expected_route, "actual_route": actual_route,
            "behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
            "topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
            "generated_answer": answer_text, "sources": sources_pretty, "source_count": len(actual_sources_set),
            "context_precision": context_precision, "context_recall": context_recall,
            "faithfulness": faithfulness, "hallucination_rate": hallucination_rate,
            "answer_correctness": answer_correctness_score,
            "category": category, "error_class": error_class,
            "latency_ms": latency_ms
        })
        
    df = pd.DataFrame(results)
    summary_text, table_rows, headers = "No valid test fixtures found to evaluate.", [], []
    
    if not df.empty:
        # Add "hallucination_rate" to this list of columns to ensure it is not dropped.
        cols = [
            "test_id", "title", "route_correct", "expected_route", "actual_route",
            "behavior_f1", "emotion_f1", "topic_f1", "context_f1",
            "generated_answer", "sources", "source_count", 
            "context_precision", "context_recall", 
            "faithfulness", "hallucination_rate",
            "answer_correctness", 
            "category", "error_class", "latency_ms", 
        ]   
        df = df[[c for c in cols if c in df.columns]]     

        # --- START OF MODIFICATION ---
        pct = df["route_correct"].value_counts(normalize=True).get("βœ…", 0) * 100
        to_f = lambda s: pd.to_numeric(s, errors="coerce")
        
        # Calculate the mean for the NLU F1 scores
        bf1_mean = to_f(df["behavior_f1"]).mean() * 100
        ef1_mean = to_f(df["emotion_f1"]).mean() * 100
        tf1_mean = to_f(df["topic_f1"]).mean() * 100
        cf1_mean = to_f(df["context_f1"]).mean() * 100

        # Calculate the mean for Faithfulness
        faith_mean = to_f(df["faithfulness"]).mean() * 100
        # --- CHANGE 6: Calculate the mean for the new metric ---
        halluc_mean = to_f(df["hallucination_rate"]).mean() * 100
        
        rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0

        # Add the NLU metrics to the summary f-string
        # Choose to use Hallucination - **RAG: Faithfulness**: {faith_mean:.1f}%  
        summary_text = f"""## Evaluation Summary
- **Routing Accuracy**: {pct:.2f}%
- **Behaviour F1 (avg)**: {bf1_mean:.2f}%
- **Emotion F1 (avg)**: {ef1_mean:.2f}%
- **Topic F1 (avg)**: {tf1_mean:.2f}%
- **Context F1 (avg)**: {cf1_mean:.2f}%
- **RAG: Context Precision**: {(to_f(df["context_precision"]).mean() * 100):.1f}%
- **RAG: Context Recall**: {(to_f(df["context_recall"]).mean() * 100):.1f}%
- **RAG  Answers w/ Sources**: {rag_with_sources_pct:.1f}%
- **RAG: Hallucination Rate**: {halluc_mean:.1f}% (Lower is better)
- **RAG: Answer Correctness (LLM-judge)**: {(to_f(df["answer_correctness"]).mean() * 100):.1f}%
- **RAG: Avg Latency (ms)**: {to_f(df["latency_ms"]).mean():.1f}
"""
        # --- END OF MODIFICATION ---
        print(summary_text)
        
        df_display = df.rename(columns={"context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall"})
        table_rows = df_display.values.tolist()
        headers = df_display.columns.tolist()

        # --- NEW: per-category averages ---
        try:
            cat_means = df.groupby("category")["answer_correctness"].mean().reset_index()
            print("\nπŸ“Š Correctness by Category:")
            print(cat_means.to_string(index=False))
        except Exception as e:
            print(f"WARNING: Could not compute category breakdown: {e}")

        # --- NEW: confusion-style matrix ---
        try:
            confusion = pd.crosstab(df.get("category", []), df.get("error_class", []),
                                    rownames=["Category"], colnames=["Error Class"], dropna=False)
            print("\nπŸ“Š Error Class Distribution by Category:")
            print(confusion.to_string())
        except Exception as e:
            print(f"WARNING: Could not build confusion matrix: {e}")
        # END
        
    else:
        summary_text = "No valid test fixtures found to evaluate."
        table_rows, headers = [], []
        

    return summary_text, table_rows, headers
    # return summary_text, table_rows

## END