File size: 15,067 Bytes
5ac4b15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# evaluate.py

import os
import json
import time
import pandas as pd
from typing import List, Dict, Any

# --- Imports from the main application ---
try:
    from alz_companion.agent import (
        make_rag_chain, route_query_type, detect_tags_from_query,
        answer_query, call_llm
    )
    from alz_companion.prompts import FAITHFULNESS_JUDGE_PROMPT
    from langchain_community.vectorstores import FAISS
except ImportError:
    class FAISS: pass
    def make_rag_chain(*args, **kwargs): return lambda q, **k: {"answer": f"(Eval Fallback) You asked: {q}", "sources": []}
    def route_query_type(q): return "general_conversation"
    def detect_tags_from_query(*args, **kwargs): return {}
    def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
    def call_llm(*args, **kwargs): return "{}"
    FAITHFULNESS_JUDGE_PROMPT = ""
    print("WARNING: Could not import from alz_companion. Evaluation functions will use fallbacks.")

# --- LLM-as-a-Judge Prompt for Answer Correctness ---
ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess the factual correctness of a generated answer against a ground truth answer.

- GROUND_TRUTH_ANSWER: This is the gold-standard, correct answer.
- GENERATED_ANSWER: This is the answer produced by the AI model.

Evaluate if the GENERATED_ANSWER is factually aligned with the GROUND_TRUTH_ANSWER. Ignore minor differences in phrasing, tone, or structure. The key is factual accuracy.

Respond with a single JSON object containing a float score from 0.0 to 1.0.
- 1.0: The generated answer is factually correct and aligns perfectly with the ground truth.
- 0.5: The generated answer is partially correct but misses key information or contains minor inaccuracies.
- 0.0: The generated answer is factually incorrect or contradicts the ground truth.

--- DATA TO EVALUATE ---
GROUND_TRUTH_ANSWER:
{ground_truth_answer}

GENERATED_ANSWER:
{generated_answer}
---

Return a single JSON object with your score:
{{
  "correctness_score": <float>
}}
"""

test_fixtures = []

def load_test_fixtures():
    """Loads fixtures into the test_fixtures list."""
    global test_fixtures
    test_fixtures = []
    env_path = os.environ.get("TEST_FIXTURES_PATH", "").strip()
    candidates = [env_path] if env_path else ["conversation_test_fixtures_v8.jsonl", "conversation_test_fixtures_v5.jsonl"]
    path = next((p for p in candidates if p and os.path.exists(p)), None)
    if not path:
        print("Warning: No test fixtures file found for evaluation.")
        return
    
    # Use the corrected v8 file if available
    if "conversation_test_fixtures_v8.jsonl" in path:
        print(f"Using corrected test fixtures: {path}")

    with open(path, "r", encoding="utf-8") as f:
        for line in f:
            try:
                test_fixtures.append(json.loads(line))
            except json.JSONDecodeError:
                print(f"Skipping malformed JSON line in {path}")
    print(f"Loaded {len(test_fixtures)} fixtures for evaluation from {path}")

def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]:
    lookup_key = expected_key_override or tag_key
    expected_raw = expected.get(lookup_key, [])
    expected_set = set(expected_raw if isinstance(expected_raw, list) else [expected_raw]) if expected_raw and expected_raw != "None" else set()
    actual_raw = actual.get(tag_key, [])
    actual_set = set(actual_raw if isinstance(actual_raw, list) else [actual_raw]) if actual_raw and actual_raw != "None" else set()
    if not expected_set and not actual_set:
        return {"precision": 1.0, "recall": 1.0, "f1_score": 1.0}
    true_positives = len(expected_set.intersection(actual_set))
    precision = true_positives / len(actual_set) if actual_set else 0.0
    recall = true_positives / len(expected_set) if expected_set else 0.0
    f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
    return {"precision": precision, "recall": recall, "f1_score": f1_score}

def _parse_judge_json(raw_str: str) -> dict | None:
    try:
        start_brace = raw_str.find('{')
        end_brace = raw_str.rfind('}')
        if start_brace != -1 and end_brace > start_brace:
            json_str = raw_str[start_brace : end_brace + 1]
            return json.loads(json_str)
        return None
    except (json.JSONDecodeError, AttributeError):
        return None

def run_comprehensive_evaluation(
    vs_general: FAISS,
    vs_personal: FAISS,
    nlu_vectorstore: FAISS,
    config: Dict[str, Any]
):
    global test_fixtures
    if not test_fixtures:
        return "No test fixtures loaded. Please ensure conversation_test_fixtures_v8.jsonl exists.", [], []

    def _norm(label: str) -> str:
        label = (label or "").strip().lower()
        return "factual_question" if "factual" in label else label
    
    print("Starting comprehensive evaluation...")
    results: List[Dict[str, Any]] = []

    # ADD THESE LINES:
    total_fixtures = len(test_fixtures)
    print(f"\nπŸš€ STARTING EVALUATION on {total_fixtures} test cases...")

    # In evaluate.py, before the evaluation loop
    print("--- DEBUG: Checking personal vector store before evaluation ---")
    if vs_personal and hasattr(vs_personal.docstore, '_dict'):
        print(f"Personal vector store contains {len(vs_personal.docstore._dict)} documents.")
    else:
        print("Personal vector store appears to be empty or invalid.")

    # REPLACE the original for loop with this one to get the counter 'i'
    for i, fx in enumerate(test_fixtures):
    # for fx in test_fixtures:
        test_id = fx.get("test_id", "N/A")
        # This print statement now works because we have 'i'
        print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
        
        
        turns = fx.get("turns") or []
        api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
        query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
        if not query: continue

        ground_truth = fx.get("ground_truth", {})
        expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
        expected_tags = ground_truth.get("expected_tags", {})

        actual_route = _norm(route_query_type(query))
        route_correct = (actual_route == expected_route)
        
        actual_tags: Dict[str, Any] = {}
        if "caregiving_scenario" in actual_route:
            actual_tags = detect_tags_from_query(
                query, nlu_vectorstore=nlu_vectorstore,
                behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
                topic_options=config["topic_tags"], context_options=config["context_tags"],
            )

        behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors")
        emotion_metrics  = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion")
        topic_metrics    = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics")
        context_metrics  = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts")

        final_tags = {}
        if "caregiving_scenario" in actual_route:
            final_tags = {
                "scenario_tag": (actual_tags.get("detected_behaviors") or [None])[0],
                "emotion_tag":  actual_tags.get("detected_emotion"),
                "topic_tag": (actual_tags.get("detected_topics") or [None])[0],
                "context_tags": actual_tags.get("detected_contexts", [])
            }
        
        current_test_role = fx.get("test_role", "patient")
        rag_chain = make_rag_chain(vs_general, vs_personal, role=current_test_role)

        t0 = time.time()
        response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
        latency_ms = round((time.time() - t0) * 1000.0, 1)
        answer_text = response.get("answer", "ERROR")
        
        expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
        raw_sources = response.get("sources", [])
        actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))

        # --- START: ADD THIS STRATEGIC PRINT BLOCK ---
        print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
        print(f"  - Expected: {sorted(list(expected_sources_set))}")
        print(f"  - Actual:   {sorted(list(actual_sources_set))}")
        
        true_positives = expected_sources_set.intersection(actual_sources_set)
        false_positives = actual_sources_set - expected_sources_set
        false_negatives = expected_sources_set - actual_sources_set

        if not false_positives and not false_negatives:
            print("  - Result: βœ… Perfect Match!")
        else:
            if false_positives:
                print(f"  - πŸ”» False Positives (hurts precision): {sorted(list(false_positives))}")
            if false_negatives:
                print(f"  - πŸ”» False Negatives (hurts recall):    {sorted(list(false_negatives))}")
        print("-"*59 + "\n")
        # --- END: ADD THIS STRATEGIC PRINT BLOCK ---
        
        context_precision, context_recall = 0.0, 0.0
        if expected_sources_set or actual_sources_set:
            true_positives = len(expected_sources_set.intersection(actual_sources_set))
            if len(actual_sources_set) > 0: context_precision = true_positives / len(actual_sources_set)
            if len(expected_sources_set) > 0: context_recall = true_positives / len(expected_sources_set)
        elif not expected_sources_set and not actual_sources_set:
            context_precision, context_recall = 1.0, 1.0

        answer_correctness_score = None
        ground_truth_answer = ground_truth.get("ground_truth_answer")
        if ground_truth_answer and "ERROR" not in answer_text:
            try:
                judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
                raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
                correctness_data = _parse_judge_json(raw_correctness)
                if correctness_data and "correctness_score" in correctness_data:
                    answer_correctness_score = float(correctness_data["correctness_score"])
            except Exception as e:
                print(f"ERROR during answer correctness judging: {e}")

        faithfulness = None
        source_docs = response.get("source_documents", [])
        if source_docs and "ERROR" not in answer_text:
            context_blob = "\n---\n".join([doc.page_content for doc in source_docs])
            judge_msg = FAITHFULNESS_JUDGE_PROMPT.format(query=query, answer=answer_text, sources=context_blob)
            try:
                if context_blob.strip():
                    raw = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
                    data = _parse_judge_json(raw)
                    if data:
                        denom = data.get("supported", 0) + data.get("contradicted", 0) + data.get("not_enough_info", 0)
                        if denom > 0: faithfulness = round(data.get("supported", 0) / denom, 3)
                        elif data.get("ignored", 0) > 0: faithfulness = 1.0
            except Exception as e:
                print(f"ERROR during faithfulness judging: {e}")

        sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
        results.append({
            "test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
            "route_correct": "βœ…" if route_correct else "❌", "expected_route": expected_route, "actual_route": actual_route,
            "behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
            "topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
            "generated_answer": answer_text, "sources": sources_pretty, "source_count": len(actual_sources_set),
            "latency_ms": latency_ms, "faithfulness": faithfulness,
            "context_precision": context_precision, "context_recall": context_recall,
            "answer_correctness": answer_correctness_score,
        })
        
    df = pd.DataFrame(results)
    output_path = "evaluation_results.csv"
    if not df.empty:
        cols = [
            "test_id", "title", "route_correct", "expected_route", "actual_route",
            "context_precision", "context_recall", "faithfulness", "answer_correctness",
            "behavior_f1", "emotion_f1", "topic_f1", "context_f1",
            "source_count", "latency_ms", "sources", "generated_answer"
        ]
        df = df[[c for c in cols if c in df.columns]]
        df.to_csv(output_path, index=False, encoding="utf-8")
        print(f"Evaluation results saved to {output_path}")
        
        pct = df["route_correct"].value_counts(normalize=True).get("βœ…", 0) * 100
        to_f = lambda s: pd.to_numeric(s, errors="coerce")
        
        cp_mean = to_f(df["context_precision"]).mean()
        cr_mean = to_f(df["context_recall"]).mean()
        faith_mean = to_f(df["faithfulness"]).mean()
        correct_mean = to_f(df["answer_correctness"]).mean()
        rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0
        
        summary_text = f"""
## Evaluation Summary
- **Routing Accuracy**: {pct:.2f}%
- **Behaviour F1 (avg)**: {(to_f(df["behavior_f1"]).mean() * 100):.2f}%
- **Emotion F1 (avg)**: {(to_f(df["emotion_f1"]).mean() * 100):.2f}%
- **Topic F1 (avg)**: {(to_f(df["topic_f1"]).mean() * 100):.2f}%
- **Context F1 (avg)**: {(to_f(df["context_f1"]).mean() * 100):.2f}%
- **RAG: Context Precision**: {"N/A" if pd.isna(cp_mean) else f'{(cp_mean * 100):.1f}%'}
- **RAG: Context Recall**: {"N/A" if pd.isna(cr_mean) else f'{(cr_mean * 100):.1f}%'}
- **RAG: Faithfulness (LLM-judge)**: {"N/A" if pd.isna(faith_mean) else f'{(faith_mean * 100):.1f}%'}
- **RAG: Answer Correctness (LLM-judge)**: {"N/A" if pd.isna(correct_mean) else f'{(correct_mean * 100):.1f}%'}
- **RAG Answers w/ Sources**: {rag_with_sources_pct:.1f}%
- **RAG: Avg Latency (ms)**: {to_f(df["latency_ms"]).mean():.1f}
"""
        df_display = df.rename(columns={
            "context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall",
            "answer_correctness": "Answer Correct.", "faithfulness": "Faithfulness",
            "behavior_f1": "Behav. F1", "emotion_f1": "Emo. F1", "topic_f1": "Topic F1", "context_f1": "Ctx. F1"
        })
        table_rows = df_display.values.tolist()
        headers = df_display.columns.tolist()
    else:
        summary_text = "No valid test fixtures found to evaluate."
        table_rows, headers = [], []
        
    return summary_text, table_rows, headers