Spaces:
Running
Running
File size: 15,067 Bytes
5ac4b15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# evaluate.py
import os
import json
import time
import pandas as pd
from typing import List, Dict, Any
# --- Imports from the main application ---
try:
from alz_companion.agent import (
make_rag_chain, route_query_type, detect_tags_from_query,
answer_query, call_llm
)
from alz_companion.prompts import FAITHFULNESS_JUDGE_PROMPT
from langchain_community.vectorstores import FAISS
except ImportError:
class FAISS: pass
def make_rag_chain(*args, **kwargs): return lambda q, **k: {"answer": f"(Eval Fallback) You asked: {q}", "sources": []}
def route_query_type(q): return "general_conversation"
def detect_tags_from_query(*args, **kwargs): return {}
def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
def call_llm(*args, **kwargs): return "{}"
FAITHFULNESS_JUDGE_PROMPT = ""
print("WARNING: Could not import from alz_companion. Evaluation functions will use fallbacks.")
# --- LLM-as-a-Judge Prompt for Answer Correctness ---
ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess the factual correctness of a generated answer against a ground truth answer.
- GROUND_TRUTH_ANSWER: This is the gold-standard, correct answer.
- GENERATED_ANSWER: This is the answer produced by the AI model.
Evaluate if the GENERATED_ANSWER is factually aligned with the GROUND_TRUTH_ANSWER. Ignore minor differences in phrasing, tone, or structure. The key is factual accuracy.
Respond with a single JSON object containing a float score from 0.0 to 1.0.
- 1.0: The generated answer is factually correct and aligns perfectly with the ground truth.
- 0.5: The generated answer is partially correct but misses key information or contains minor inaccuracies.
- 0.0: The generated answer is factually incorrect or contradicts the ground truth.
--- DATA TO EVALUATE ---
GROUND_TRUTH_ANSWER:
{ground_truth_answer}
GENERATED_ANSWER:
{generated_answer}
---
Return a single JSON object with your score:
{{
"correctness_score": <float>
}}
"""
test_fixtures = []
def load_test_fixtures():
"""Loads fixtures into the test_fixtures list."""
global test_fixtures
test_fixtures = []
env_path = os.environ.get("TEST_FIXTURES_PATH", "").strip()
candidates = [env_path] if env_path else ["conversation_test_fixtures_v8.jsonl", "conversation_test_fixtures_v5.jsonl"]
path = next((p for p in candidates if p and os.path.exists(p)), None)
if not path:
print("Warning: No test fixtures file found for evaluation.")
return
# Use the corrected v8 file if available
if "conversation_test_fixtures_v8.jsonl" in path:
print(f"Using corrected test fixtures: {path}")
with open(path, "r", encoding="utf-8") as f:
for line in f:
try:
test_fixtures.append(json.loads(line))
except json.JSONDecodeError:
print(f"Skipping malformed JSON line in {path}")
print(f"Loaded {len(test_fixtures)} fixtures for evaluation from {path}")
def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]:
lookup_key = expected_key_override or tag_key
expected_raw = expected.get(lookup_key, [])
expected_set = set(expected_raw if isinstance(expected_raw, list) else [expected_raw]) if expected_raw and expected_raw != "None" else set()
actual_raw = actual.get(tag_key, [])
actual_set = set(actual_raw if isinstance(actual_raw, list) else [actual_raw]) if actual_raw and actual_raw != "None" else set()
if not expected_set and not actual_set:
return {"precision": 1.0, "recall": 1.0, "f1_score": 1.0}
true_positives = len(expected_set.intersection(actual_set))
precision = true_positives / len(actual_set) if actual_set else 0.0
recall = true_positives / len(expected_set) if expected_set else 0.0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
return {"precision": precision, "recall": recall, "f1_score": f1_score}
def _parse_judge_json(raw_str: str) -> dict | None:
try:
start_brace = raw_str.find('{')
end_brace = raw_str.rfind('}')
if start_brace != -1 and end_brace > start_brace:
json_str = raw_str[start_brace : end_brace + 1]
return json.loads(json_str)
return None
except (json.JSONDecodeError, AttributeError):
return None
def run_comprehensive_evaluation(
vs_general: FAISS,
vs_personal: FAISS,
nlu_vectorstore: FAISS,
config: Dict[str, Any]
):
global test_fixtures
if not test_fixtures:
return "No test fixtures loaded. Please ensure conversation_test_fixtures_v8.jsonl exists.", [], []
def _norm(label: str) -> str:
label = (label or "").strip().lower()
return "factual_question" if "factual" in label else label
print("Starting comprehensive evaluation...")
results: List[Dict[str, Any]] = []
# ADD THESE LINES:
total_fixtures = len(test_fixtures)
print(f"\nπ STARTING EVALUATION on {total_fixtures} test cases...")
# In evaluate.py, before the evaluation loop
print("--- DEBUG: Checking personal vector store before evaluation ---")
if vs_personal and hasattr(vs_personal.docstore, '_dict'):
print(f"Personal vector store contains {len(vs_personal.docstore._dict)} documents.")
else:
print("Personal vector store appears to be empty or invalid.")
# REPLACE the original for loop with this one to get the counter 'i'
for i, fx in enumerate(test_fixtures):
# for fx in test_fixtures:
test_id = fx.get("test_id", "N/A")
# This print statement now works because we have 'i'
print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
turns = fx.get("turns") or []
api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
if not query: continue
ground_truth = fx.get("ground_truth", {})
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
expected_tags = ground_truth.get("expected_tags", {})
actual_route = _norm(route_query_type(query))
route_correct = (actual_route == expected_route)
actual_tags: Dict[str, Any] = {}
if "caregiving_scenario" in actual_route:
actual_tags = detect_tags_from_query(
query, nlu_vectorstore=nlu_vectorstore,
behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
topic_options=config["topic_tags"], context_options=config["context_tags"],
)
behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors")
emotion_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion")
topic_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics")
context_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts")
final_tags = {}
if "caregiving_scenario" in actual_route:
final_tags = {
"scenario_tag": (actual_tags.get("detected_behaviors") or [None])[0],
"emotion_tag": actual_tags.get("detected_emotion"),
"topic_tag": (actual_tags.get("detected_topics") or [None])[0],
"context_tags": actual_tags.get("detected_contexts", [])
}
current_test_role = fx.get("test_role", "patient")
rag_chain = make_rag_chain(vs_general, vs_personal, role=current_test_role)
t0 = time.time()
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
latency_ms = round((time.time() - t0) * 1000.0, 1)
answer_text = response.get("answer", "ERROR")
expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
raw_sources = response.get("sources", [])
actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))
# --- START: ADD THIS STRATEGIC PRINT BLOCK ---
print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
print(f" - Expected: {sorted(list(expected_sources_set))}")
print(f" - Actual: {sorted(list(actual_sources_set))}")
true_positives = expected_sources_set.intersection(actual_sources_set)
false_positives = actual_sources_set - expected_sources_set
false_negatives = expected_sources_set - actual_sources_set
if not false_positives and not false_negatives:
print(" - Result: β
Perfect Match!")
else:
if false_positives:
print(f" - π» False Positives (hurts precision): {sorted(list(false_positives))}")
if false_negatives:
print(f" - π» False Negatives (hurts recall): {sorted(list(false_negatives))}")
print("-"*59 + "\n")
# --- END: ADD THIS STRATEGIC PRINT BLOCK ---
context_precision, context_recall = 0.0, 0.0
if expected_sources_set or actual_sources_set:
true_positives = len(expected_sources_set.intersection(actual_sources_set))
if len(actual_sources_set) > 0: context_precision = true_positives / len(actual_sources_set)
if len(expected_sources_set) > 0: context_recall = true_positives / len(expected_sources_set)
elif not expected_sources_set and not actual_sources_set:
context_precision, context_recall = 1.0, 1.0
answer_correctness_score = None
ground_truth_answer = ground_truth.get("ground_truth_answer")
if ground_truth_answer and "ERROR" not in answer_text:
try:
judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
correctness_data = _parse_judge_json(raw_correctness)
if correctness_data and "correctness_score" in correctness_data:
answer_correctness_score = float(correctness_data["correctness_score"])
except Exception as e:
print(f"ERROR during answer correctness judging: {e}")
faithfulness = None
source_docs = response.get("source_documents", [])
if source_docs and "ERROR" not in answer_text:
context_blob = "\n---\n".join([doc.page_content for doc in source_docs])
judge_msg = FAITHFULNESS_JUDGE_PROMPT.format(query=query, answer=answer_text, sources=context_blob)
try:
if context_blob.strip():
raw = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
data = _parse_judge_json(raw)
if data:
denom = data.get("supported", 0) + data.get("contradicted", 0) + data.get("not_enough_info", 0)
if denom > 0: faithfulness = round(data.get("supported", 0) / denom, 3)
elif data.get("ignored", 0) > 0: faithfulness = 1.0
except Exception as e:
print(f"ERROR during faithfulness judging: {e}")
sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
results.append({
"test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
"route_correct": "β
" if route_correct else "β", "expected_route": expected_route, "actual_route": actual_route,
"behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
"topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
"generated_answer": answer_text, "sources": sources_pretty, "source_count": len(actual_sources_set),
"latency_ms": latency_ms, "faithfulness": faithfulness,
"context_precision": context_precision, "context_recall": context_recall,
"answer_correctness": answer_correctness_score,
})
df = pd.DataFrame(results)
output_path = "evaluation_results.csv"
if not df.empty:
cols = [
"test_id", "title", "route_correct", "expected_route", "actual_route",
"context_precision", "context_recall", "faithfulness", "answer_correctness",
"behavior_f1", "emotion_f1", "topic_f1", "context_f1",
"source_count", "latency_ms", "sources", "generated_answer"
]
df = df[[c for c in cols if c in df.columns]]
df.to_csv(output_path, index=False, encoding="utf-8")
print(f"Evaluation results saved to {output_path}")
pct = df["route_correct"].value_counts(normalize=True).get("β
", 0) * 100
to_f = lambda s: pd.to_numeric(s, errors="coerce")
cp_mean = to_f(df["context_precision"]).mean()
cr_mean = to_f(df["context_recall"]).mean()
faith_mean = to_f(df["faithfulness"]).mean()
correct_mean = to_f(df["answer_correctness"]).mean()
rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0
summary_text = f"""
## Evaluation Summary
- **Routing Accuracy**: {pct:.2f}%
- **Behaviour F1 (avg)**: {(to_f(df["behavior_f1"]).mean() * 100):.2f}%
- **Emotion F1 (avg)**: {(to_f(df["emotion_f1"]).mean() * 100):.2f}%
- **Topic F1 (avg)**: {(to_f(df["topic_f1"]).mean() * 100):.2f}%
- **Context F1 (avg)**: {(to_f(df["context_f1"]).mean() * 100):.2f}%
- **RAG: Context Precision**: {"N/A" if pd.isna(cp_mean) else f'{(cp_mean * 100):.1f}%'}
- **RAG: Context Recall**: {"N/A" if pd.isna(cr_mean) else f'{(cr_mean * 100):.1f}%'}
- **RAG: Faithfulness (LLM-judge)**: {"N/A" if pd.isna(faith_mean) else f'{(faith_mean * 100):.1f}%'}
- **RAG: Answer Correctness (LLM-judge)**: {"N/A" if pd.isna(correct_mean) else f'{(correct_mean * 100):.1f}%'}
- **RAG Answers w/ Sources**: {rag_with_sources_pct:.1f}%
- **RAG: Avg Latency (ms)**: {to_f(df["latency_ms"]).mean():.1f}
"""
df_display = df.rename(columns={
"context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall",
"answer_correctness": "Answer Correct.", "faithfulness": "Faithfulness",
"behavior_f1": "Behav. F1", "emotion_f1": "Emo. F1", "topic_f1": "Topic F1", "context_f1": "Ctx. F1"
})
table_rows = df_display.values.tolist()
headers = df_display.columns.tolist()
else:
summary_text = "No valid test fixtures found to evaluate."
table_rows, headers = [], []
return summary_text, table_rows, headers
|