File size: 52,100 Bytes
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a20464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a20464
be01e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
import os
import json
import shutil
import gradio as gr
import tempfile
from datetime import datetime
from typing import List, Dict, Any, Optional
from pytube import YouTube
from pathlib import Path
import re
import pandas as pd

# --- Agent Imports ---
try:
    from alz_companion.agent import (
        bootstrap_vectorstore, make_rag_chain, answer_query, synthesize_tts,
        transcribe_audio, detect_tags_from_query, describe_image, build_or_load_vectorstore,
        _default_embeddings, route_query_type, call_llm
    )
    from alz_companion.prompts import (
        BEHAVIOUR_TAGS, EMOTION_STYLES, FAITHFULNESS_JUDGE_PROMPT
    )
    from langchain.schema import Document
    from langchain_community.vectorstores import FAISS
    AGENT_OK = True
except Exception as e:
    AGENT_OK = False
    class Document:
        def __init__(self, page_content, metadata): self.page_content, self.metadata = page_content, metadata
    class FAISS:
        def __init__(self):
            self.docstore = type('obj', (object,), {'_dict': {}})()
        def add_documents(self, docs):
            start_idx = len(self.docstore._dict)
            for i, d in enumerate(docs, start_idx):
                self.docstore._dict[i] = d
        def save_local(self, path): pass
        @classmethod
        def from_documents(cls, docs, embeddings=None):
            inst = cls()
            inst.add_documents(docs)
            return inst
    def build_or_load_vectorstore(docs, index_path, is_personal=False): return FAISS.from_documents(docs or [], embeddings=None)
    def bootstrap_vectorstore(sample_paths=None, index_path="data/"): return object()
    def make_rag_chain(vs_general, vs_personal, **kwargs): return lambda q, **k: {"answer": f"(Demo) You asked: {q}", "sources": []}
    def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
    def synthesize_tts(text: str, lang: str = "en"): return None
    def transcribe_audio(filepath: str, lang: str = "en"): return "This is a transcribed message."
    def detect_tags_from_query(*args, **kwargs): return {"detected_behavior": "None", "detected_emotion": "None"}
    def describe_image(image_path: str): return "This is a description of an image."
    def _default_embeddings(): return None
    def route_query_type(query: str): return "general_conversation"
    def call_llm(messages, **kwargs): return "Cannot call LLM in fallback mode."
    BEHAVIOUR_TAGS, EMOTION_STYLES, FAITHFULNESS_JUDGE_PROMPT = {"None": []}, {"None": {}}, ""
    print(f"WARNING: Could not import from alz_companion ({e}). Running in UI-only demo mode.")
    

# --- NEW: Import for Evaluation Logic ---
try:
    from evaluate import load_test_fixtures, run_comprehensive_evaluation
except ImportError:
    # Fallback if evaluate.py is not found
    def load_test_fixtures(): print("WARNING: evaluate.py not found.")
    def run_comprehensive_evaluation(*args, **kwargs): return "Evaluation module not found.", []


# --- Centralized Configuration ---
CONFIG = {
    "themes": ["All", "The Father", "Still Alice", "Away from Her", "Alive Inside", "General Caregiving"],
    "roles": ["patient", "caregiver"],
    "disease_stages": ["Default: Mild Stage",  "Moderate Stage", "Advanced Stage"],
    "behavior_tags": ["None"] + list(BEHAVIOUR_TAGS.keys()),
    "emotion_tags": ["None"] + list(EMOTION_STYLES.keys()),
    "topic_tags": ["None", "caregiving_advice", "medical_fact", "personal_story", "research_update", "treatment_option:home_safety", "treatment_option:long_term_care", "treatment_option:music_therapy", "treatment_option:reassurance", "treatment_option:routine_structuring", "treatment_option:validation_therapy"],
    "context_tags": ["None", "disease_stage_mild", "disease_stage_moderate", "disease_stage_advanced", "disease_stage_unspecified", "interaction_mode_one_to_one", "interaction_mode_small_group", "interaction_mode_group_activity", "relationship_family", "relationship_spouse", "relationship_staff_or_caregiver", "relationship_unspecified", "setting_home_or_community", "setting_care_home", "setting_clinic_or_hospital"],
    "languages": {"English": "en", "Chinese": "zh", "Cantonese": "zh-yue", "Korean": "ko", "Japanese": "ja", "Malay": "ms", "French": "fr", "Spanish": "es", "Hindi": "hi", "Arabic": "ar"},
    "tones": ["warm", "empathetic", "caring", "reassuring", "calm", "optimistic", "motivating", "neutral", "formal", "humorous"],
    # --- ADD THIS NEW KEY AND LIST ---
    "music_moods": [
        "Confusion or Disorientation",
        "Reminiscence and Connection",
        "Sundowning or Restlessness",
        "Sadness or Longing",
        "Anxiety or Fear",
        "Agitation or Anger",
        "Joy or Affection"
    ]
    # --- END OF ADDITION ---
}

# --- File Management & Vector Store Logic ---
def _storage_root() -> Path:
    for p in [Path(os.getenv("SPACE_STORAGE", "")), Path("/data"), Path.home() / ".cache" / "alz_companion"]:
        if not p: continue
        try:
            p.mkdir(parents=True, exist_ok=True)
            (p / ".write_test").write_text("ok")
            (p / ".write_test").unlink(missing_ok=True)
            return p
        except Exception: continue
    tmp = Path(tempfile.gettempdir()) / "alz_companion"
    tmp.mkdir(parents=True, exist_ok=True)
    return tmp
    
STORAGE_ROOT = _storage_root()
INDEX_BASE = STORAGE_ROOT / "index"
# --- NEW: Define path for the auto-loading folder ---
PERSISTENT_MEMORY_PATH = Path(__file__).parent / "Personal Memory Bank"
# --- END NEW ---
PERSONAL_DATA_BASE = STORAGE_ROOT / "personal"
UPLOADS_BASE = INDEX_BASE / "uploads"
PERSONAL_INDEX_PATH = str(PERSONAL_DATA_BASE / "personal_faiss_index")
NLU_EXAMPLES_INDEX_PATH = str(INDEX_BASE / "nlu_examples_faiss_index")
THEME_PATHS = {t: str(INDEX_BASE / f"faiss_index_{t.replace(' ', '').lower()}") for t in CONFIG["themes"]}
os.makedirs(UPLOADS_BASE, exist_ok=True)
os.makedirs(PERSONAL_DATA_BASE, exist_ok=True)
# --- NEW: Create the folders on startup if it does not exist ---
os.makedirs(PERSISTENT_MEMORY_PATH, exist_ok=True)
# --- END NEW ---


for p in THEME_PATHS.values(): os.makedirs(p, exist_ok=True)
vectorstores = {}
personal_vectorstore = None
nlu_vectorstore = None

try:
    personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
except Exception:
    personal_vectorstore = None
def bootstrap_nlu_vectorstore(example_file: str, index_path: str) -> FAISS:
    if not os.path.exists(example_file):
        print(f"WARNING: NLU example file not found at {example_file}. NLU will be less accurate.")
        return build_or_load_vectorstore([], index_path)
    docs = []
    with open(example_file, "r", encoding="utf-8") as f:
        for line in f:
            try:
                data = json.loads(line)
                doc = Document(page_content=data["query"], metadata=data)
                docs.append(doc)
            except (json.JSONDecodeError, KeyError): continue
    print(f"Found and loaded {len(docs)} NLU training examples.")
    if os.path.exists(index_path): shutil.rmtree(index_path)
    return build_or_load_vectorstore(docs, index_path)


# In app.py, near the other path definitions
PERSONAL_MUSIC_BASE = PERSONAL_DATA_BASE / "music"
os.makedirs(PERSONAL_MUSIC_BASE, exist_ok=True)

# In app.py, replace your existing versions of these three functions with the code below.
# --- Function 1: Auto-loads non-music memories from the 'Personal Memory Bank' folder ---
def load_personal_files_from_folder():
    """
    Scans the 'Personal Memory Bank' folder and loads new multi-modal files 
    (text, audio, video, images) into the personal vectorstore.
    """
    global personal_vectorstore
    print("Scanning 'Personal Memory Bank' folder for new files...")
    if not os.path.exists(PERSISTENT_MEMORY_PATH):
        return

    # Define supported file extensions
    TEXT_EXTENSIONS = (".txt",)
    AUDIO_EXTENSIONS = (".mp3", ".wav", ".m4a", ".flac")
    VIDEO_EXTENSIONS = (".mp4", ".mov", ".avi", ".mkv")
    IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".gif", ".bmp")

    # Get a list of sources already in the vectorstore to avoid re-processing files
    existing_sources = set()
    if personal_vectorstore and hasattr(personal_vectorstore.docstore, '_dict'):
        for doc in personal_vectorstore.docstore._dict.values():
            existing_sources.add(doc.metadata.get("source"))

    docs_to_add = []
    for filename in os.listdir(PERSISTENT_MEMORY_PATH):
        if filename in existing_sources:
            continue

        filepath = PERSISTENT_MEMORY_PATH / filename
        content_to_process = ""
        
        file_lower = filename.lower()

        if file_lower.endswith(TEXT_EXTENSIONS):
            print(f"  - Found new text file to load: {filename}")
            with open(filepath, "r", encoding="utf-8") as f:
                content_to_process = f.read()
        
        elif file_lower.endswith(AUDIO_EXTENSIONS) or file_lower.endswith(VIDEO_EXTENSIONS):
            media_type = "Audio" if file_lower.endswith(AUDIO_EXTENSIONS) else "Video"
            print(f"  - Found new {media_type} file to transcribe: {filename}")
            try:
                transcribed_text = transcribe_audio(str(filepath))
                title = os.path.splitext(filename)[0].replace('_', ' ').replace('-', ' ')
                content_to_process = f"Title: {title}\n\nContent: {transcribed_text}"
            except Exception as e:
                print(f"    - ERROR: Failed to transcribe {filename}. Reason: {e}")
                continue
        
        elif file_lower.endswith(IMAGE_EXTENSIONS):
            print(f"  - Found new Image file to describe: {filename}")
            try:
                description = describe_image(str(filepath))
                title = os.path.splitext(filename)[0].replace('_', ' ').replace('-', ' ')
                content_to_process = f"Title: {title}\n\nContent: {description}"
            except Exception as e:
                print(f"    - ERROR: Failed to describe {filename}. Reason: {e}")
                continue

        if content_to_process:
            docs_to_add.extend(parse_and_tag_entries(content_to_process, source=filename, settings={}))

    if docs_to_add:
        if personal_vectorstore is None:
            personal_vectorstore = build_or_load_vectorstore(docs_to_add, PERSONAL_INDEX_PATH, is_personal=True)
        else:
            personal_vectorstore.add_documents(docs_to_add)
        
        personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
        print(f"Successfully added {len(docs_to_add)} new document(s) from the folder.")


# --- Function 2: Auto-syncs music from the 'Music Library' folder (Hybrid Approach) ---
def sync_music_library_from_folder():
    """Scans 'Music Library' folder, syncs manifest for playback, and adds lyrics to vectorstore."""
    global personal_vectorstore
    music_library_path = PERSISTENT_MEMORY_PATH / "Music Library"
    os.makedirs(music_library_path, exist_ok=True)
    
    manifest_path = PERSONAL_MUSIC_BASE / "music_manifest.json"
    manifest = {}
    if manifest_path.exists():
        with open(manifest_path, "r") as f: manifest = json.load(f)
    
    existing_sources = set()
    if personal_vectorstore and hasattr(personal_vectorstore.docstore, '_dict'):
        for doc in personal_vectorstore.docstore._dict.values():
            existing_sources.add(doc.metadata.get("source"))

    print("Scanning 'Music Library' folder for new songs...")
    filename_pattern = re.compile(r'^(.*?) - (.*?) - (.*?)\.(mp3|wav|m4a|ogg|flac)$', re.IGNORECASE)
    
    synced_count = 0
    docs_to_add = []
    for filename in os.listdir(music_library_path):
        song_id = filename.replace(" ", "_").lower()
        if song_id in manifest and filename in existing_sources:
            continue

        match = filename_pattern.match(filename)
        if match:
            print(f"  - Found new song to sync: {filename}")
            title, artist, tag = match.groups()[:3]
            
            source_path = music_library_path / filename
            dest_path = PERSONAL_MUSIC_BASE / filename
            if not os.path.exists(dest_path):
                shutil.copy2(str(source_path), str(dest_path))

            # Add to manifest for playback system
            song_metadata = {"title": title.strip(), "artist": artist.strip(), "moods": [tag.strip().lower()], "filepath": str(dest_path)}
            manifest[song_id] = song_metadata
            
            # --- NEW HYBRID LOGIC: Transcribe and prep for vectorstore ---
            # Transcribe and prep for semantic memory system (vectorstore)
            if filename not in existing_sources:
                try:
                    print(f"    - Transcribing '{title}' for memory bank...")
                    lyrics = transcribe_audio(str(dest_path))
                    content_for_rag = (
                        f"Title: Song - {song_metadata['title']}\n"
                        f"Artist: {song_metadata['artist']}\n"
                        f"Moods: {', '.join(song_metadata['moods'])}\n\n"
                        f"Lyrics:\n{lyrics}"
                    )
                    docs_to_add.extend(parse_and_tag_entries(content_for_rag, source=filename, settings={}))
                except Exception as e:
                    print(f"    - WARNING: Failed to transcribe {filename} for memory bank. Error: {e}")
            # --- END OF NEW HYBRID LOGIC ---
            synced_count += 1

    if synced_count > 0:
        with open(manifest_path, "w") as f: json.dump(manifest, f, indent=2)
        print(f"Successfully synced {synced_count} new song(s) to the music manifest.")
    
    if docs_to_add:
        if personal_vectorstore is None:
            personal_vectorstore = build_or_load_vectorstore(docs_to_add, PERSONAL_INDEX_PATH, is_personal=True)
        else:
            personal_vectorstore.add_documents(docs_to_add)
        personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
        print(f"Successfully added lyrics for {len(docs_to_add)} song(s) to the personal vectorstore.")


def canonical_theme(tk: str) -> str: return tk if tk in CONFIG["themes"] else "All"
def theme_upload_dir(theme: str) -> str:
    p = UPLOADS_BASE / f"theme_{canonical_theme(theme).replace(' ', '').lower()}"
    p.mkdir(exist_ok=True)
    return str(p)
def load_manifest(theme: str) -> Dict[str, Any]:
    p = os.path.join(theme_upload_dir(theme), "manifest.json")
    if os.path.exists(p):
        try:
            with open(p, "r", encoding="utf-8") as f: return json.load(f)
        except Exception: pass
    return {"files": {}}
def save_manifest(theme: str, man: Dict[str, Any]):
    with open(os.path.join(theme_upload_dir(theme), "manifest.json"), "w", encoding="utf-8") as f: json.dump(man, f, indent=2)
def list_theme_files(theme: str) -> List[tuple[str, bool]]:
    man = load_manifest(theme)
    base = theme_upload_dir(theme)
    found = [(n, bool(e)) for n, e in man.get("files", {}).items() if os.path.exists(os.path.join(base, n))]
    existing = {n for n, e in found}
    for name in sorted(os.listdir(base)):
        if name not in existing and os.path.isfile(os.path.join(base, name)): found.append((name, False))
    man["files"] = dict(found)
    save_manifest(theme, man)
    return found
def copy_into_theme(theme: str, src_path: str) -> str:
    fname = os.path.basename(src_path)
    dest = os.path.join(theme_upload_dir(theme), fname)
    shutil.copy2(src_path, dest)
    return dest
def seed_files_into_theme(theme: str):
    SEED_FILES = [("sample_data/caregiving_tips.txt", True), ("sample_data/the_father_segments_enriched_harmonized_plus.jsonl", True), ("sample_data/still_alice_enriched_harmonized_plus.jsonl", True), ("sample_data/away_from_her_enriched_harmonized_plus.jsonl", True), ("sample_data/alive_inside_enriched_harmonized.jsonl", True)]
    man, changed = load_manifest(theme), False
    for path, enable in SEED_FILES:
        if not os.path.exists(path): continue
        fname = os.path.basename(path)
        if not os.path.exists(os.path.join(theme_upload_dir(theme), fname)):
            copy_into_theme(theme, path)
            man["files"][fname] = bool(enable)
            changed = True
    if changed: save_manifest(theme, man)
def ensure_index(theme='All'):
    theme = canonical_theme(theme)
    if theme in vectorstores: return vectorstores[theme]
    upload_dir = theme_upload_dir(theme)
    enabled_files = [os.path.join(upload_dir, n) for n, enabled in list_theme_files(theme) if enabled]
    index_path = THEME_PATHS.get(theme)
    vectorstores[theme] = bootstrap_vectorstore(sample_paths=enabled_files, index_path=index_path)
    return vectorstores[theme]

# --- Gradio Callbacks ---
# In app.py, modify the collect_settings function

def collect_settings(*args):
    keys = ["role", "patient_name", "caregiver_name", "tone", "language", "tts_lang", "temperature", 
            # --- ADD "disease_stage" to this list ---
            "disease_stage", 
            "behaviour_tag", "emotion_tag", "topic_tag", "active_theme", "tts_on", "debug_mode"]
    return dict(zip(keys, args))

# NEW:  MUST be consistent with collect_settings() defined above
def auto_setup_on_load(theme):
    if not os.listdir(theme_upload_dir(theme)): seed_files_into_theme(theme)
    
    # --- START: DEFINITIVE FIX ---
    # This now provides the correct number and order of default settings.
    settings = collect_settings(
        "patient",             # role
        "",                    # patient_name
        "",                    # caregiver_name
        "warm",                # tone
        "English",             # language
        "English",             # tts_lang
        0.7,                   # temperature
        "Default: Mild Stage", # disease_stage  <-- Correctly set
        "None",                # behaviour_tag
        "None",                # emotion_tag
        "None",                # topic_tag
        "All",                 # active_theme  <-- Correctly set
        True,                  # tts_on
        False                  # debug_mode
    )
    # --- END: DEFINITIVE FIX ---

    files_ui, status = refresh_file_list_ui(theme)
    return settings, files_ui, status
    

# In app.py, replace the entire parse_and_tag_entries function.
def parse_and_tag_entries(text_content: str, source: str, settings: dict = None) -> List[Document]:
    docs_to_add = []
    # This logic correctly handles both simple text and complex journal entries
    entries = re.split(r'\n(?:---|--|-|-\*-|-\.-)\n', text_content)
    if len(entries) == 1 and "title:" not in entries[0].lower() and "content:" not in entries[0].lower():
        entries = [text_content] # Treat simple text as a single entry

    for entry in entries:
        if not entry.strip(): continue
        
        lines = entry.strip().split('\n')
        title_line = lines[0].split(':', 1)
        title = title_line[1].strip() if len(title_line) > 1 and "title:" in lines[0].lower() else "Untitled Text Entry"
        content_part = "\n".join(lines[1:])
        content = content_part.split(':', 1)[1].strip() if "content:" in content_part.lower() else content_part.strip() or entry.strip()

        if not content: continue
        
        full_content = f"Title: {title}\n\nContent: {content}"
        
        detected_tags = detect_tags_from_query(
            content, nlu_vectorstore=nlu_vectorstore, 
            behavior_options=CONFIG["behavior_tags"], emotion_options=CONFIG["emotion_tags"],
            topic_options=CONFIG["topic_tags"], context_options=CONFIG["context_tags"],
            settings=settings
        )
        
        metadata = {"source": source, "title": title}
        
        # --- START: CORRECTED METADATA ASSIGNMENT ---
        if detected_tags.get("detected_behaviors"):
            metadata["behaviors"] = [b.lower() for b in detected_tags["detected_behaviors"]]
        detected_emotion = detected_tags.get("detected_emotion")
        if detected_emotion and detected_emotion != "None":
            metadata["emotion"] = detected_emotion.lower()
        
        # Correctly handle the plural "detected_topics" key and list value
        detected_topics = detected_tags.get("detected_topics")
        if detected_topics:
            metadata["topic_tags"] = [t.lower() for t in detected_topics]
            
        if detected_tags.get("detected_contexts"):
            metadata["context_tags"] = [c.lower() for c in detected_tags["detected_contexts"]]
        # --- END: CORRECTED METADATA ASSIGNMENT ---
        
        docs_to_add.append(Document(page_content=full_content, metadata=metadata))

    return docs_to_add


def handle_add_knowledge(title, text_input, file_input, image_input, yt_url, settings):
    global personal_vectorstore
    docs_to_add = []
    source, content = "Unknown", ""
    if text_input and text_input.strip():
        source, content = "Text Input", f"Title: {title or 'Untitled'}\n\nContent: {text_input}"
    elif file_input:
        source = os.path.basename(file_input.name)
        if file_input.name.lower().endswith('.txt'):
            with open(file_input.name, 'r', encoding='utf-8') as f: content = f.read()
        else:
            transcribed = transcribe_audio(file_input.name)
            content = f"Title: {title or 'Audio/Video Note'}\n\nContent: {transcribed}"
    elif image_input:
        source, description = "Image Input", describe_image(image_input)
        content = f"Title: {title or 'Image Note'}\n\nContent: {description}"
    elif yt_url and ("youtube.com" in yt_url or "youtu.be" in yt_url):
        try:
            yt = YouTube(yt_url)
            with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_audio_file:
                yt.streams.get_audio_only().download(filename=temp_audio_file.name)
                transcribed = transcribe_audio(temp_audio_file.name)
                os.remove(temp_audio_file.name)
            source, content = f"YouTube: {yt.title}", f"Title: {title or yt.title}\n\nContent: {transcribed}"
        except Exception as e:
            return f"Error processing YouTube link: {e}"
    else:
        return "Please provide content to add."
    if content:
        docs_to_add = parse_and_tag_entries(content, source, settings=settings)
    if not docs_to_add: return "No processable content found to add."
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore(docs_to_add, PERSONAL_INDEX_PATH, is_personal=True)
    else:
        personal_vectorstore.add_documents(docs_to_add)
    personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
    return f"Successfully added {len(docs_to_add)} new memory/memories."


# In app.py, add this new handler function

def handle_add_music(file, title, artist, mood):
    if not all([file, title, artist, mood]):
        return "Please fill out all fields."
    
    # Save the audio file
    filename = os.path.basename(file.name)
    dest_path = PERSONAL_MUSIC_BASE / filename
    shutil.copy2(file.name, str(dest_path))

    # Save the metadata to a manifest file
    manifest_path = PERSONAL_MUSIC_BASE / "music_manifest.json"
    manifest = {}
    if manifest_path.exists():
        with open(manifest_path, "r") as f:
            manifest = json.load(f)

    song_id = filename.replace(" ", "_").lower()
    manifest[song_id] = {
        "title": title.strip(),
        "artist": artist.strip(),
        # "moods": [m.strip().lower() for m in mood.split(",")],
        "moods": [m.lower() for m in mood], # Correctly handles the list from the dropdown
        "filepath": str(dest_path) # Store the full path for backend access
    }

    with open(manifest_path, "w") as f:
        json.dump(manifest, f, indent=2)

    return f"Successfully added '{title}' to the music library."

# In app.py, add these two new functions (e.g., after the handle_add_music function)

def list_music_library():
    """Loads the music manifest and formats it for the Gradio UI."""
    manifest_path = PERSONAL_MUSIC_BASE / "music_manifest.json"
    if not manifest_path.exists():
        return gr.update(value=[["Library is empty", "", ""]]), gr.update(choices=[], value=None)
    
    with open(manifest_path, "r") as f:
        manifest = json.load(f)
        
    if not manifest:
        return gr.update(value=[["Library is empty", "", ""]]), gr.update(choices=[], value=None)

    display_data = [[data['title'], data['artist'], ", ".join(data['moods'])] for data in manifest.values()]
    
    # Use the song's unique ID (the key in the manifest) for the delete dropdown
    delete_choices = list(manifest.keys())

    return gr.update(value=display_data), gr.update(choices=delete_choices, value=None)

def delete_music_from_library(song_id_to_delete):
    """Deletes a song from the manifest, the audio file, and the vectorstore."""
    global personal_vectorstore
    if not song_id_to_delete:
        return "No music selected to delete."

    # 1. Remove from manifest and delete audio file
    manifest_path = PERSONAL_MUSIC_BASE / "music_manifest.json"
    if not manifest_path.exists(): return "Error: Music manifest not found."

    with open(manifest_path, "r") as f: manifest = json.load(f)
    
    song_to_delete = manifest.pop(song_id_to_delete, None)
    if not song_to_delete: return f"Error: Could not find song ID {song_id_to_delete} in manifest."
    
    with open(manifest_path, "w") as f: json.dump(manifest, f, indent=2)

    try:
        os.remove(song_to_delete['filepath'])
    except OSError as e:
        print(f"Error deleting audio file {song_to_delete['filepath']}: {e}")

    # 2. Remove lyrics from the personal vectorstore
    if personal_vectorstore and hasattr(personal_vectorstore.docstore, '_dict'):
        filename_to_delete = os.path.basename(song_to_delete['filepath'])
        all_docs = list(personal_vectorstore.docstore._dict.values())
        
        # Find the document whose source matches the audio filename
        docs_to_keep = [d for d in all_docs if d.metadata.get("source") != filename_to_delete]
        
        if len(all_docs) > len(docs_to_keep):
            if not docs_to_keep: # If it was the last doc
                if os.path.isdir(PERSONAL_INDEX_PATH): shutil.rmtree(PERSONAL_INDEX_PATH)
                personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
            else:
                new_vs = FAISS.from_documents(docs_to_keep, _default_embeddings())
                new_vs.save_local(PERSONAL_INDEX_PATH)
                personal_vectorstore = new_vs
            return f"Successfully deleted '{song_to_delete['title']}' from the library and memory bank."

    return f"Successfully deleted '{song_to_delete['title']}' from the music library."
    

def chat_fn(user_text, audio_file, settings, chat_history):

    # --- ADD THIS DEBUG BLOCK AT THE TOP ---
    print("\n" + "="*50)
    print(f"[DEBUG app.py] chat_fn received settings: {settings}")
    print("="*50 + "\n")
    # --- END OF ADDITION ---
    
    global personal_vectorstore
    question = (user_text or "").strip()
    if audio_file and not question:
        try:
            question = transcribe_audio(audio_file, lang=CONFIG["languages"].get(settings.get("tts_lang", "English"), "en"))
        except Exception as e:
            err_msg = f"Audio Error: {e}" if settings.get("debug_mode") else "Sorry, I couldn't understand the audio."
            chat_history.append({"role": "assistant", "content": err_msg})
            return "", None, chat_history
            
    if not question:
        return "", None, chat_history

    # --- START FIX 1: Correctly process the incoming chat_history (list of dicts) ---
    # The incoming chat_history is already in the desired format for the API,
    # we just need to filter out our special system messages (like sources).
    api_chat_history = [
        msg for msg in chat_history
        if msg.get("content") and not msg["content"].strip().startswith("*(")
    ]
    
    # Append the new user question to the history that will be displayed in the UI
    chat_history.append({"role": "user", "content": question})
    # --- END FIX 1 ---

    # NEW
    query_type = route_query_type(question, severity=settings.get("disease_stage", "Default: Mild Stage"))
    # query_type = route_query_type(question)
    # --- ADD THIS DEBUG PRINT ---
    print(f"[DEBUG] Router classified query as: {query_type}")
    # --- END OF ADDITION ---

    
    final_tags = { "scenario_tag": None, "emotion_tag": None, "topic_tag": None, "context_tags": [] }
    manual_behavior = settings.get("behaviour_tag", "None")
    manual_emotion = settings.get("emotion_tag", "None")
    manual_topic = settings.get("topic_tag", "None")

    auto_detected_context = ""
    if not all(m == "None" for m in [manual_behavior, manual_emotion, manual_topic]):
        # --- ADD THIS DEBUG PRINT ---
        print(f"[DEBUG app.py] Manual override DETECTED. Behavior='{manual_behavior}', Emotion='{manual_emotion}', Topic='{manual_topic}'")
        # --- END OF ADDITION ---
       
        final_tags["scenario_tag"] = manual_behavior if manual_behavior != "None" else None
        final_tags["emotion_tag"] = manual_emotion if manual_emotion != "None" else None
        final_tags["topic_tag"] = manual_topic if manual_topic != "None" else None
        
    # NEW: Expand detecting emotions and behaviors for caregiving to music playing
    # whenever a request to play music, the system will first analyze their query to detect an underlying emotion or behavior
    elif "caregiving_scenario" in query_type or "play_music_request" in query_type:

        # --- NEW DEBUG BLOCK: Print inputs before calling NLU ---
        print("\n--- [DEBUG app.py] Preparing to call NLU ---")
        print(f"  - Query to Analyze: '{question}'")
        print(f"  - NLU Vectorstore Loaded: {nlu_vectorstore is not None}")
        print(f"  - Current Settings Passed: {settings}")
        print("------------------------------------------")
        # --- END OF NEW DEBUG BLOCK ---
        
        detected_tags = detect_tags_from_query(
            question, nlu_vectorstore=nlu_vectorstore, behavior_options=CONFIG["behavior_tags"],
            emotion_options=CONFIG["emotion_tags"], topic_options=CONFIG["topic_tags"],
            context_options=CONFIG["context_tags"], settings=settings)

        # --- ADD THIS DEBUG PRINT ---
        print(f"[DEBUG app.py] Raw NLU output: {detected_tags}")
        # --- END OF ADDITION ---
        
        behaviors = detected_tags.get("detected_behaviors")
        final_tags["scenario_tag"] = behaviors[0] if behaviors else None
        final_tags["emotion_tag"] = detected_tags.get("detected_emotion")
        final_tags["topic_tag"] = detected_tags.get("detected_topic")
        final_tags["context_tags"] = detected_tags.get("detected_contexts", [])

        # --- ADD THIS DEBUG PRINT ---
        print(f"[DEBUG] NLU detected tags: {final_tags}")
        # --- END OF ADDITION ---
        
        detected_parts = [f"{k.split('_')[1]}=`{v}`" for k, v in final_tags.items() if v and v != "None" and v != []]
        if detected_parts:
            auto_detected_context = f"*(Auto-detected context: {', '.join(detected_parts)})*"
            
    vs_general = ensure_index(settings.get("active_theme", "All"))
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
        
    # OLD rag_settings = {k: settings.get(k) for k in ["role", "temperature", "language", "patient_name", "caregiver_name", "tone"]}
    # NEW add "disease_stage"
    # rag_settings = {k: settings.get(k) for k in ["role", "temperature", "language", "patient_name", "caregiver_name", "tone", "disease_stage"]}

    # First, construct the path to the manifest file.
    manifest_path_str = str(PERSONAL_MUSIC_BASE / "music_manifest.json")

    # Then, gather all the settings from the UI into the dictionary.
    rag_settings = {k: settings.get(k) for k in ["role", "temperature", "language", "patient_name", "caregiver_name", "tone", "disease_stage"]}

    # Finally, add the special manifest path to that same dictionary.
    rag_settings["music_manifest_path"] = manifest_path_str 
    
    chain = make_rag_chain(vs_general, personal_vectorstore, **rag_settings)
    
    response = answer_query(chain, question, query_type=query_type, chat_history=api_chat_history, **final_tags)

   # --- MUSIC PLAYBACK LOGIC START ---

    # 1. Extract the text answer and the potential music file path from the agent's response.
    answer = response.get("answer", "[No answer found]")
    audio_playback_url = response.get("audio_playback_url")

    # 2. Append the text part of the response to the chat history so the user sees it.
    chat_history.append({"role": "assistant", "content": answer})

    if auto_detected_context:
        chat_history.append({"role": "assistant", "content": auto_detected_context})
    if response.get("sources"):
        chat_history.append({"role": "assistant", "content": f"*(Sources used: {', '.join(response['sources'])})*"})

    # 3. Decide what to play in the audio component: music takes priority over TTS.
    audio_out_update = None
    if audio_playback_url:
        # If a music URL was returned, update the audio component to play that music file.
        song_title = os.path.basename(audio_playback_url)
        audio_out_update = gr.update(value=audio_playback_url, visible=True, label=f"Now Playing: {song_title}", autoplay=True)
    elif settings.get("tts_on") and answer:
        # Otherwise, if no music is playing and TTS is on, fall back to reading the text answer aloud.
        tts_file = synthesize_tts(answer, lang=CONFIG["languages"].get(settings.get("tts_lang"), "en"))
        audio_out_update = gr.update(value=tts_file, visible=bool(tts_file), label="Response Audio", autoplay=True)
    
    # 4. Return all the updates for the Gradio UI.
    return "", audio_out_update, chat_history
    
    # --- MUSIC PLAYBACK LOGIC END ---

 
# The save_chat_to_memory function incorrectly assumes the history is 
# a list of tuples, like [(True, "..."), (False, "...")]
# However, The chat_fn function correctly builds the chat_history as 
# a list of dictionaries, like this:
# [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
# To correctly parse the list of dictionaries.
def save_chat_to_memory(chat_history):
    if not chat_history:
        return "Nothing to save."

    # --- START: MODIFIED LOGIC ---
    # Correctly processes the list of dictionaries from the chatbot
    formatted_chat = [
        f"{msg.get('role', 'assistant').capitalize()}: {msg.get('content', '').strip()}"
        for msg in chat_history
        if isinstance(msg, dict) and msg.get('content') and not msg.get('content', '').strip().startswith("*(")
    ]
    # --- END: MODIFIED LOGIC ---

    if not formatted_chat:
        return "No conversation to save."

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    title = f"Conversation from {timestamp}"
    full_content = f"Title: {title}\n\nContent:\n" + "\n".join(formatted_chat)
    doc = Document(page_content=full_content, metadata={"source": "Saved Chat", "title": title})

    global personal_vectorstore
    if personal_vectorstore is None:
        personal_vectorstore = build_or_load_vectorstore([doc], PERSONAL_INDEX_PATH, is_personal=True)
    else:
        personal_vectorstore.add_documents([doc])
    
    personal_vectorstore.save_local(PERSONAL_INDEX_PATH)
    return f"Conversation from {timestamp} saved."


def list_personal_memories():
    global personal_vectorstore
    if personal_vectorstore is None or not hasattr(personal_vectorstore.docstore, '_dict') or not personal_vectorstore.docstore._dict:
        return gr.update(value=[["No memories", "", ""]]), gr.update(choices=[], value=None)
    docs = list(personal_vectorstore.docstore._dict.values())
    return gr.update(value=[[d.metadata.get('title', '...'), d.metadata.get('source', '...'), d.page_content] for d in docs]), gr.update(choices=[d.page_content for d in docs])
def delete_personal_memory(memory_to_delete):
    global personal_vectorstore
    if personal_vectorstore is None or not memory_to_delete: return "No memory selected."
    all_docs = list(personal_vectorstore.docstore._dict.values())
    docs_to_keep = [d for d in all_docs if d.page_content != memory_to_delete]
    if len(all_docs) == len(docs_to_keep): return "Error: Could not find memory."
    if not docs_to_keep:
        if os.path.isdir(PERSONAL_INDEX_PATH): shutil.rmtree(PERSONAL_INDEX_PATH)
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
    else:
        new_vs = FAISS.from_documents(docs_to_keep, _default_embeddings())
        new_vs.save_local(PERSONAL_INDEX_PATH)
        personal_vectorstore = new_vs
    return "Successfully deleted memory."

# --- EVALUATION FUNCTIONS: move them into evaluate.py
# def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]:
# def _parse_judge_json(raw_str: str) -> dict | None:
# def run_comprehensive_evaluation():

def upload_knowledge(files, theme):
    for f in files: copy_into_theme(theme, f.name)
    if theme in vectorstores: del vectorstores[theme]
    return f"Uploaded {len(files)} file(s)."
def save_file_selection(theme, enabled):
    man = load_manifest(theme)
    for fname in man['files']: man['files'][fname] = fname in enabled
    save_manifest(theme, man)
    if theme in vectorstores: del vectorstores[theme]
    return f"Settings saved for theme '{theme}'."
def refresh_file_list_ui(theme):
    files = list_theme_files(theme)
    return gr.update(choices=[f for f, _ in files], value=[f for f, en in files if en]), f"Found {len(files)} file(s)."
  
def test_save_file():
    try:
        path = PERSONAL_DATA_BASE / "persistence_test.txt"
        path.write_text(f"File saved at: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        return f"βœ… Success! Wrote test file to: {path}"
    except Exception as e: return f"❌ Error! Failed to write file: {e}"
def check_test_file():
    path = PERSONAL_DATA_BASE / "persistence_test.txt"
    if path.exists(): return f"βœ… Success! Found test file. Contents: '{path.read_text()}'"
    return f"❌ Failure. Test file not found at: {path}"

# --- UI Definition ---
CSS = """
.gradio-container { font-size: 14px; } 
#chatbot { min-height: 400px; } 
#audio_in audio, #audio_out audio { max-height: 40px; } 
#audio_in .waveform, #audio_out .waveform { display: none !important; }
#audio_in, #audio_out { min-height: 0px !important; }
"""

# OLD: add allowed_paths so the UI can access the music files
# with gr.Blocks(theme=gr.themes.Soft(), css=CSS, allowed_paths=[str(PERSONAL_MUSIC_BASE)]) as demo:
with gr.Blocks(theme=gr.themes.Soft(), css=CSS) as demo:
    settings_state = gr.State({})
    with gr.Tab("Chat"):
        with gr.Row():
            user_text = gr.Textbox(show_label=False, placeholder="Type your message here...", scale=7)
            submit_btn = gr.Button("Send", variant="primary", scale=1)
        with gr.Row():
            audio_in = gr.Audio(sources=["microphone"], type="filepath", label="Voice Input", elem_id="audio_in")
            audio_out = gr.Audio(label="Response Audio", autoplay=True, visible=True, elem_id="audio_out")
        
        chatbot = gr.Chatbot(elem_id="chatbot", label="Conversation", type="messages")
        chat_status = gr.Markdown()
        with gr.Row():
            clear_btn = gr.Button("Clear")
            save_btn = gr.Button("Save to Memory")

    with gr.Tab("Personalize"):
        gr.Markdown("### **Upload Personal Memory**")
        with gr.Accordion("Add Multimodal Data to Personal Memory Bank", open=True):
            personal_title = gr.Textbox(label="Title")
            personal_text = gr.Textbox(lines=5, label="Text Content")
            with gr.Row():
                personal_file = gr.File(label="Upload Audio/Video/Text File")
                personal_image = gr.Image(type="filepath", label="Upload Image")
            personal_yt_url = gr.Textbox(label="Or, provide a YouTube URL")
            personal_add_btn = gr.Button("Add Knowledge", variant="primary")
            personal_status = gr.Markdown()
            
        # In app.py, within the "Personalize" Tab
        gr.Markdown("### **Upload Personal Music Library**")
        with gr.Accordion("Add Music to Personal Memory Bank", open=False):
            music_file = gr.File(label="Upload Audio File (.mp3, .wav)", file_types=["audio"])
            music_title = gr.Textbox(label="Song Title (e.g., My Way)")
            music_artist = gr.Textbox(label="Artist (e.g., Frank Sinatra)")
            # music_mood = gr.Textbox(label="Mood Tags (comma-separated, e.g., calm, happy, nostalgic)")
            # NEW:  Add a dropdown menu music tag selection based on emotion and behavior tags
            music_mood = gr.Dropdown(
                CONFIG["music_moods"],
                label="Select Moods/Contexts for this Song",
                multiselect=True
            )
            music_add_btn = gr.Button("Add Music", variant="primary")
            music_status = gr.Markdown()
        
        gr.Markdown("### **Manage Personal Memory Bank**")
        with gr.Accordion("View/Hide Details", open=False):
            personal_memory_display = gr.DataFrame(headers=["Title", "Source", "Content"], label="Saved Memories", row_count=(5, "dynamic"))
            personal_refresh_btn = gr.Button("Refresh Memories")
            personal_delete_selector = gr.Dropdown(label="Select memory to delete", scale=3, interactive=True)
            personal_delete_btn = gr.Button("Delete Selected", variant="stop", scale=1)
            personal_delete_status = gr.Markdown()

        # --- NEW UI FOR MUSIC MANAGEMENT ---
        gr.Markdown("### **Manage Music Library**")
        with gr.Accordion("View/Hide Music Details", open=False):
            music_library_display = gr.DataFrame(
                headers=["Title", "Artist", "Moods"], 
                label="Music Library", 
                row_count=(5, "dynamic")
            )
            music_refresh_btn = gr.Button("Refresh Music List")
            music_delete_selector = gr.Dropdown(
                label="Select music to delete", 
                scale=3, 
                interactive=True
            )
            music_delete_btn = gr.Button("Delete Selected Music", variant="stop", scale=1)
            music_delete_status = gr.Markdown()
        # --- END OF NEW UI ---

    with gr.Tab("Settings"):
        with gr.Group():
            gr.Markdown("## Conversation & Persona Settings")
            with gr.Row():
                role = gr.Radio(CONFIG["roles"], value="patient", label="Your Role")
                patient_name = gr.Textbox(label="Patient's Name")
                caregiver_name = gr.Textbox(label="Caregiver's Name")
            with gr.Row():
                temperature = gr.Slider(0.0, 1.2, value=0.7, step=0.1, label="Creativity")
                tone = gr.Dropdown(CONFIG["tones"], value="warm", label="Response Tone")
            with gr.Row():
                # --- ADD THIS NEW DROPDOWN ---
                # disease_stage = gr.Dropdown(CONFIG["disease_stages"], value="Normal / Unspecified", label="Assumed Disease Stage")
                disease_stage = gr.Dropdown(CONFIG["disease_stages"], value="Default: Mild Stage", label="Assumed Disease Stage")
                # --- END OF ADDITION ---
                behaviour_tag = gr.Dropdown(CONFIG["behavior_tags"], value="None", label="Behaviour Filter (Manual)")
                emotion_tag = gr.Dropdown(CONFIG["emotion_tags"], value="None", label="Emotion Filter (Manual)")
                topic_tag = gr.Dropdown(CONFIG["topic_tags"], value="None", label="Topic Tag Filter (Manual)")
        with gr.Accordion("Language, Voice & Debugging", open=False):
            language = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Response Language")
            tts_lang = gr.Dropdown(list(CONFIG["languages"].keys()), value="English", label="Voice Language")
            tts_on = gr.Checkbox(True, label="Enable Voice Response")
            debug_mode = gr.Checkbox(False, label="Show Debug Info")
        gr.Markdown("--- \n ## General Knowledge Base Management")
        with gr.Row():
            with gr.Column(scale=1):
                files_in = gr.File(file_count="multiple", file_types=[".jsonl", ".txt"], label="Upload Knowledge Files")
                upload_btn = gr.Button("Upload to Theme")
                seed_btn = gr.Button("Import Sample Data")
                mgmt_status = gr.Markdown()
            with gr.Column(scale=2):
                active_theme = gr.Radio(CONFIG["themes"], value="All", label="Active Knowledge Theme")
                files_box = gr.CheckboxGroup(choices=[], label="Enable Files for Selected Theme")
                with gr.Row():
                    save_files_btn = gr.Button("Save Selection", variant="primary")
                    refresh_btn = gr.Button("Refresh List")
        with gr.Accordion("Persistence Test", open=False):
            test_save_btn = gr.Button("1. Run Persistence Test (Save File)")
            check_save_btn = gr.Button("3. Check for Test File")
            test_status = gr.Markdown()
  
    # --- UPDATED TESTING TAB ---
    with gr.Tab("Testing"):
        gr.Markdown("## Comprehensive Performance Evaluation")
        gr.Markdown("Click the button below to run a full evaluation on all test fixtures. This will test NLU (Routing & Tagging) and generate RAG responses for manual review.")
        
        run_comprehensive_btn = gr.Button("Run Comprehensive Evaluation", variant="primary")
        
        batch_summary_md = gr.Markdown("### Evaluation Summary: Not yet run.")
        
        comprehensive_results_df = gr.DataFrame(
            label="Detailed Evaluation Results", 
            elem_id="comprehensive_results_df",
            headers=[
                "Test ID","Title","Route Correct?","Expected Route","Actual Route",
                "Behavior F1","Emotion F1","Topic F1","Context F1",
                "Generated Answer","Sources","Source Count","Latency (ms)", "Faithfulness"
            ],
            interactive=False
        )
        

    # --- Event Wiring ---
    all_settings = [
        # Chat Tab Settings
        role, patient_name, caregiver_name, tone, language, tts_lang, temperature,
        # Disease Stage & Manual Filters
        disease_stage, behaviour_tag, emotion_tag, topic_tag,
        # Knowledge Base & Debug
        active_theme, tts_on, debug_mode
    ]
    settings_state = gr.State({})

    # In app.py, replace the event wiring loop right after the all_settings list

    for component in all_settings:
        component.change(fn=collect_settings, inputs=all_settings, outputs=settings_state)

    submit_btn.click(fn=chat_fn, inputs=[user_text, audio_in, settings_state, chatbot], outputs=[user_text, audio_out, chatbot])
    
    # for c in all_settings: c.change(fn=collect_settings, inputs=all_settings, outputs=settings_state)
    # submit_btn.click(fn=chat_fn, inputs=[user_text, audio_in, settings_state, chatbot], outputs=[user_text, audio_out, chatbot])
    
    save_btn.click(fn=save_chat_to_memory, inputs=[chatbot], outputs=[chat_status])
    clear_btn.click(lambda: (None, None, [], None, "", ""), outputs=[user_text, audio_out, chatbot, audio_in, user_text, chat_status])
    
    personal_add_btn.click(fn=handle_add_knowledge, inputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url, settings_state], outputs=[personal_status]).then(lambda: (None, None, None, None, None), outputs=[personal_title, personal_text, personal_file, personal_image, personal_yt_url])
    # Wire the button to the function in the UI event wiring section
    music_add_btn.click(
        fn=handle_add_music,
        inputs=[music_file, music_title, music_artist, music_mood],
        outputs=[music_status]
    )
     # --- NEW EVENT WIRING FOR MUSIC MANAGEMENT ---
    music_refresh_btn.click(
        fn=list_music_library, 
        inputs=None, 
        outputs=[music_library_display, music_delete_selector]
    )
    music_delete_btn.click(
        fn=delete_music_from_library, 
        inputs=[music_delete_selector], 
        outputs=[music_delete_status]
    ).then(
        fn=list_music_library, 
        inputs=None, 
        outputs=[music_library_display, music_delete_selector]
    )
    # --- END OF NEW WIRING ---
    
    personal_refresh_btn.click(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
    personal_delete_btn.click(fn=delete_personal_memory, inputs=[personal_delete_selector], outputs=[personal_delete_status]).then(fn=list_personal_memories, inputs=None, outputs=[personal_memory_display, personal_delete_selector])
    
    upload_btn.click(upload_knowledge, inputs=[files_in, active_theme], outputs=[mgmt_status]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    save_files_btn.click(save_file_selection, inputs=[active_theme, files_box], outputs=[mgmt_status])
    seed_btn.click(seed_files_into_theme, inputs=[active_theme]).then(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    refresh_btn.click(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])
    active_theme.change(refresh_file_list_ui, inputs=[active_theme], outputs=[files_box, mgmt_status])

    # Then update the .click() event handler
    run_comprehensive_btn.click(
    fn=lambda: run_comprehensive_evaluation(
        vs_general=ensure_index("All"),
        vs_personal=personal_vectorstore, # <-- This is correctly passed in
        nlu_vectorstore=nlu_vectorstore,
        config=CONFIG,
        storage_path=STORAGE_ROOT  # <-- ADD THIS ARGUMENT
    ),
    outputs=[batch_summary_md, comprehensive_results_df, comprehensive_results_df]
)
        
    demo.load(auto_setup_on_load, inputs=[active_theme], outputs=[settings_state, files_box, mgmt_status])
    demo.load(load_test_fixtures)
    test_save_btn.click(fn=test_save_file, inputs=None, outputs=[test_status])
    check_save_btn.click(fn=check_test_file, inputs=None, outputs=[test_status])

# --- Startup Logic ---
# --- Function 3: The Startup Orchestrator ---
def pre_load_indexes():
    """Loads all data sources and runs the auto-loading functions at startup."""
    global personal_vectorstore, nlu_vectorstore
    print("Pre-loading all indexes at startup...")
    print("  - Loading NLU examples index...")
    nlu_vectorstore = bootstrap_nlu_vectorstore("nlu_training_examples.jsonl", NLU_EXAMPLES_INDEX_PATH)
    print(f"    ...NLU index loaded.")
    for theme in CONFIG["themes"]:
        print(f"  - Loading general index for theme: '{theme}'")
        try:
            ensure_index(theme)
            print(f"    ...'{theme}' theme loaded.")
        except Exception as e:
            print(f"    ...Error loading theme '{theme}': {e}")
            
    print("  - Loading personal knowledge index...")
    try:
        personal_vectorstore = build_or_load_vectorstore([], PERSONAL_INDEX_PATH, is_personal=True)
        print("    ...Personal knowledge loaded.")
    except Exception as e:
        print(f"    ...Error loading personal knowledge: {e}")
        
    # NEW: auto-loading and syncing functions with a small pre-loaded Personal Memory Bank 
    load_personal_files_from_folder()
    sync_music_library_from_folder()
    
    print("All indexes and personal files loaded. Application is ready.")



if __name__ == "__main__":
    seed_files_into_theme('All')
    pre_load_indexes()
    demo.queue().launch(debug=True, allowed_paths=[str(PERSONAL_MUSIC_BASE)])
    # demo.queue().launch(debug=True)