Spaces:
Running
Running
Update evaluate.py
Browse files- evaluate.py +29 -48
evaluate.py
CHANGED
|
@@ -352,6 +352,31 @@ def run_comprehensive_evaluation(
|
|
| 352 |
ground_truth = fx.get("ground_truth", {})
|
| 353 |
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
|
| 354 |
expected_tags = ground_truth.get("expected_tags", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
actual_route = _norm(route_query_type(query))
|
| 356 |
route_correct = (actual_route == expected_route)
|
| 357 |
|
|
@@ -384,46 +409,7 @@ def run_comprehensive_evaluation(
|
|
| 384 |
role=current_test_role,
|
| 385 |
for_evaluation=True
|
| 386 |
)
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
# --- START MODIFICATION ---
|
| 390 |
-
if NLU_ONLY_TEST:
|
| 391 |
-
# 1. Run only the NLU parts
|
| 392 |
-
actual_route = route_query_type(user_query)
|
| 393 |
-
actual_tags = detect_tags_from_query(user_query, actual_route)
|
| 394 |
-
|
| 395 |
-
# 2. Add the NLU results to your list
|
| 396 |
-
results.append({
|
| 397 |
-
"test_id": test_id,
|
| 398 |
-
"title": title,
|
| 399 |
-
"user_query": user_query,
|
| 400 |
-
"actual_route": actual_route,
|
| 401 |
-
"expected_route": expected_route,
|
| 402 |
-
"route_correct": 1 if actual_route == expected_route else 0,
|
| 403 |
-
"actual_tags": actual_tags,
|
| 404 |
-
"expected_tags": expected_tags,
|
| 405 |
-
# Set RAG metrics to default/None values
|
| 406 |
-
"raw_sources": [],
|
| 407 |
-
"expected_sources": expected_sources,
|
| 408 |
-
"answer": "(NLU_ONLY_TEST)",
|
| 409 |
-
"context_precision": None,
|
| 410 |
-
"context_recall": None,
|
| 411 |
-
"recall_at_5": None,
|
| 412 |
-
"answer_correctness": None,
|
| 413 |
-
"faithfulness_score": None,
|
| 414 |
-
"latency_ms": 0
|
| 415 |
-
})
|
| 416 |
-
|
| 417 |
-
# 3. Use 'continue' to skip the rest of the loop and go to the next test case
|
| 418 |
-
continue
|
| 419 |
-
# --- END MODIFICATION ---
|
| 420 |
-
|
| 421 |
-
# ####################################################################
|
| 422 |
-
# ALL OF YOUR ORIGINAL RAG PIPELINE CODE STAYS HERE.
|
| 423 |
-
# IT IS NOT INDENTED AND ONLY RUNS IF NLU_ONLY_TEST IS FALSE.
|
| 424 |
-
# ####################################################################
|
| 425 |
-
|
| 426 |
-
|
| 427 |
t0 = time.time()
|
| 428 |
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
|
| 429 |
latency_ms = round((time.time() - t0) * 1000.0, 1)
|
|
@@ -531,10 +517,9 @@ def run_comprehensive_evaluation(
|
|
| 531 |
"latency_ms": latency_ms
|
| 532 |
})
|
| 533 |
|
| 534 |
-
#
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
# ####################################################################
|
| 538 |
|
| 539 |
df = pd.DataFrame(results)
|
| 540 |
summary_text, table_rows, headers = "No valid test fixtures found to evaluate.", [], []
|
|
@@ -562,10 +547,6 @@ def run_comprehensive_evaluation(
|
|
| 562 |
tf1_mean = to_f(df["topic_f1"]).mean() * 100
|
| 563 |
cf1_mean = to_f(df["context_f1"]).mean() * 100
|
| 564 |
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
# --- START: CORRECTED SUMMARY LOGIC ---
|
| 570 |
# 1. Start building the summary_text string with the common parts
|
| 571 |
summary_text = f"""## Evaluation Summary (Mode: {'NLU-Only' if NLU_ONLY_TEST else 'Full RAG'})
|
|
|
|
| 352 |
ground_truth = fx.get("ground_truth", {})
|
| 353 |
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
|
| 354 |
expected_tags = ground_truth.get("expected_tags", {})
|
| 355 |
+
expected_sources = ground_truth.get("expected_sources", [])
|
| 356 |
+
|
| 357 |
+
# --- 2. NLU-ONLY GUARD CLAUSE ---
|
| 358 |
+
if NLU_ONLY_TEST:
|
| 359 |
+
actual_route = _norm(route_query_type(query))
|
| 360 |
+
actual_tags = {}
|
| 361 |
+
if "caregiving_scenario" in actual_route:
|
| 362 |
+
actual_tags = detect_tags_from_query(
|
| 363 |
+
query, nlu_vectorstore=nlu_vectorstore,
|
| 364 |
+
behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
|
| 365 |
+
topic_options=config["topic_tags"], context_options=config["context_tags"],
|
| 366 |
+
)
|
| 367 |
+
results.append({
|
| 368 |
+
"test_id": test_id, "title": fx.get("title", "N/A"), "user_query": query,
|
| 369 |
+
"actual_route": actual_route, "expected_route": expected_route,
|
| 370 |
+
"route_correct": 1 if actual_route == expected_route else 0,
|
| 371 |
+
"actual_tags": actual_tags, "expected_tags": expected_tags,
|
| 372 |
+
"raw_sources": [], "expected_sources": expected_sources, "answer": "(NLU_ONLY_TEST)",
|
| 373 |
+
"context_precision": None, "context_recall": None, "recall_at_5": None,
|
| 374 |
+
"answer_correctness": None, "faithfulness_score": None, "latency_ms": 0
|
| 375 |
+
})
|
| 376 |
+
continue # Skip to the next test case
|
| 377 |
+
# END if NLU_ONLY_TEST:
|
| 378 |
+
|
| 379 |
+
# --- 3. FULL RAG PIPELINE (only runs if NLU_ONLY_TEST is False) ---
|
| 380 |
actual_route = _norm(route_query_type(query))
|
| 381 |
route_correct = (actual_route == expected_route)
|
| 382 |
|
|
|
|
| 409 |
role=current_test_role,
|
| 410 |
for_evaluation=True
|
| 411 |
)
|
| 412 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
t0 = time.time()
|
| 414 |
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
|
| 415 |
latency_ms = round((time.time() - t0) * 1000.0, 1)
|
|
|
|
| 517 |
"latency_ms": latency_ms
|
| 518 |
})
|
| 519 |
|
| 520 |
+
# --- 4. FINAL SUMMARY AND RETURN SECTION ---
|
| 521 |
+
if not results:
|
| 522 |
+
return "No valid test fixtures found to evaluate.", [], []
|
|
|
|
| 523 |
|
| 524 |
df = pd.DataFrame(results)
|
| 525 |
summary_text, table_rows, headers = "No valid test fixtures found to evaluate.", [], []
|
|
|
|
| 547 |
tf1_mean = to_f(df["topic_f1"]).mean() * 100
|
| 548 |
cf1_mean = to_f(df["context_f1"]).mean() * 100
|
| 549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
# --- START: CORRECTED SUMMARY LOGIC ---
|
| 551 |
# 1. Start building the summary_text string with the common parts
|
| 552 |
summary_text = f"""## Evaluation Summary (Mode: {'NLU-Only' if NLU_ONLY_TEST else 'Full RAG'})
|