Spaces:
Running
Running
Update evaluate.py
Browse files- evaluate.py +81 -124
evaluate.py
CHANGED
|
@@ -131,52 +131,63 @@ def _classify_error(gt: str, gen: str) -> str:
|
|
| 131 |
return "omission"
|
| 132 |
return "contradiction"
|
| 133 |
|
|
|
|
|
|
|
| 134 |
|
| 135 |
def run_comprehensive_evaluation(
|
| 136 |
-
vs_general:
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
):
|
| 141 |
global test_fixtures
|
| 142 |
if not test_fixtures:
|
| 143 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def _norm(label: str) -> str:
|
| 146 |
label = (label or "").strip().lower()
|
| 147 |
return "factual_question" if "factual" in label else label
|
| 148 |
|
| 149 |
print("Starting comprehensive evaluation...")
|
| 150 |
results: List[Dict[str, Any]] = []
|
| 151 |
-
|
| 152 |
-
# ADD THESE LINES:
|
| 153 |
total_fixtures = len(test_fixtures)
|
| 154 |
print(f"\nπ STARTING EVALUATION on {total_fixtures} test cases...")
|
| 155 |
|
| 156 |
-
# In evaluate.py, before the evaluation loop
|
| 157 |
-
print("--- DEBUG: Checking personal vector store before evaluation ---")
|
| 158 |
-
if vs_personal and hasattr(vs_personal.docstore, '_dict'):
|
| 159 |
-
print(f"Personal vector store contains {len(vs_personal.docstore._dict)} documents.")
|
| 160 |
-
else:
|
| 161 |
-
print("Personal vector store appears to be empty or invalid.")
|
| 162 |
-
|
| 163 |
-
# REPLACE the original for loop with this one to get the counter 'i'
|
| 164 |
for i, fx in enumerate(test_fixtures):
|
| 165 |
-
# for fx in test_fixtures:
|
| 166 |
test_id = fx.get("test_id", "N/A")
|
| 167 |
-
# This print statement now works because we have 'i'
|
| 168 |
print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
|
| 169 |
|
| 170 |
-
|
| 171 |
turns = fx.get("turns") or []
|
| 172 |
api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
|
| 173 |
query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
|
| 174 |
if not query: continue
|
| 175 |
|
|
|
|
|
|
|
| 176 |
ground_truth = fx.get("ground_truth", {})
|
| 177 |
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
|
| 178 |
expected_tags = ground_truth.get("expected_tags", {})
|
| 179 |
-
|
| 180 |
actual_route = _norm(route_query_type(query))
|
| 181 |
route_correct = (actual_route == expected_route)
|
| 182 |
|
|
@@ -203,25 +214,31 @@ def run_comprehensive_evaluation(
|
|
| 203 |
}
|
| 204 |
|
| 205 |
current_test_role = fx.get("test_role", "patient")
|
| 206 |
-
rag_chain = make_rag_chain(
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
| 208 |
t0 = time.time()
|
| 209 |
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
|
| 210 |
latency_ms = round((time.time() - t0) * 1000.0, 1)
|
| 211 |
answer_text = response.get("answer", "ERROR")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
|
| 214 |
raw_sources = response.get("sources", [])
|
| 215 |
actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))
|
| 216 |
|
| 217 |
-
# --- START: ADD THIS STRATEGIC PRINT BLOCK ---
|
| 218 |
print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
|
| 219 |
print(f" - Expected: {sorted(list(expected_sources_set))}")
|
| 220 |
print(f" - Actual: {sorted(list(actual_sources_set))}")
|
| 221 |
|
| 222 |
true_positives = expected_sources_set.intersection(actual_sources_set)
|
| 223 |
false_positives = actual_sources_set - expected_sources_set
|
| 224 |
-
false_negatives = expected_sources_set - actual_sources_set
|
| 225 |
|
| 226 |
if not false_positives and not false_negatives:
|
| 227 |
print(" - Result: β
Perfect Match!")
|
|
@@ -231,35 +248,34 @@ def run_comprehensive_evaluation(
|
|
| 231 |
if false_negatives:
|
| 232 |
print(f" - π» False Negatives (hurts recall): {sorted(list(false_negatives))}")
|
| 233 |
print("-"*59 + "\n")
|
| 234 |
-
|
| 235 |
-
|
| 236 |
context_precision, context_recall = 0.0, 0.0
|
| 237 |
if expected_sources_set or actual_sources_set:
|
| 238 |
-
|
| 239 |
-
if len(actual_sources_set) > 0: context_precision =
|
| 240 |
-
if len(expected_sources_set) > 0: context_recall =
|
| 241 |
elif not expected_sources_set and not actual_sources_set:
|
| 242 |
context_precision, context_recall = 1.0, 1.0
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
| 247 |
|
|
|
|
| 248 |
if ground_truth_answer and "ERROR" not in answer_text:
|
| 249 |
try:
|
| 250 |
judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
|
|
|
|
| 251 |
raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
|
|
|
|
| 252 |
correctness_data = _parse_judge_json(raw_correctness)
|
| 253 |
-
|
| 254 |
if correctness_data and "correctness_score" in correctness_data:
|
| 255 |
answer_correctness_score = float(correctness_data["correctness_score"])
|
| 256 |
-
|
| 257 |
except Exception as e:
|
| 258 |
print(f"ERROR during answer correctness judging: {e}")
|
| 259 |
|
| 260 |
-
# --- NEW: derive error class for diagnostics ---
|
| 261 |
-
error_class = _classify_error(ground_truth_answer, answer_text)
|
| 262 |
-
|
| 263 |
faithfulness = None
|
| 264 |
source_docs = response.get("source_documents", [])
|
| 265 |
if source_docs and "ERROR" not in answer_text:
|
|
@@ -279,9 +295,6 @@ def run_comprehensive_evaluation(
|
|
| 279 |
sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
|
| 280 |
results.append({
|
| 281 |
"test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
|
| 282 |
-
# NEW for debugging
|
| 283 |
-
"category": _categorize_test(test_id), "error_class": error_class,
|
| 284 |
-
# END
|
| 285 |
"route_correct": "β
" if route_correct else "β", "expected_route": expected_route, "actual_route": actual_route,
|
| 286 |
"behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
|
| 287 |
"topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
|
|
@@ -289,110 +302,54 @@ def run_comprehensive_evaluation(
|
|
| 289 |
"latency_ms": latency_ms, "faithfulness": faithfulness,
|
| 290 |
"context_precision": context_precision, "context_recall": context_recall,
|
| 291 |
"answer_correctness": answer_correctness_score,
|
|
|
|
|
|
|
| 292 |
})
|
| 293 |
|
| 294 |
df = pd.DataFrame(results)
|
| 295 |
-
|
|
|
|
| 296 |
if not df.empty:
|
| 297 |
-
cols = [
|
| 298 |
-
"test_id", "title", "route_correct", "expected_route", "actual_route",
|
| 299 |
-
"context_precision", "context_recall", "faithfulness", "answer_correctness",
|
| 300 |
-
"behavior_f1", "emotion_f1", "topic_f1", "context_f1",
|
| 301 |
-
"source_count", "latency_ms", "sources", "generated_answer"
|
| 302 |
-
]
|
| 303 |
df = df[[c for c in cols if c in df.columns]]
|
|
|
|
| 304 |
df.to_csv(output_path, index=False, encoding="utf-8")
|
| 305 |
print(f"Evaluation results saved to {output_path}")
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
logf.write(
|
| 312 |
-
logf.write(df.to_string(index=False))
|
| 313 |
logf.write("\n\n")
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
print(cat_means.to_string(index=False))
|
| 320 |
-
with open("evaluation_log.txt", "a", encoding="utf-8") as logf:
|
| 321 |
logf.write("\nπ Correctness by Category:\n")
|
| 322 |
logf.write(cat_means.to_string(index=False))
|
| 323 |
logf.write("\n")
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
print("\nπ Error Class Distribution by Category:")
|
| 332 |
-
print(confusion.to_string())
|
| 333 |
-
with open("evaluation_log.txt", "a", encoding="utf-8") as logf:
|
| 334 |
logf.write("\nπ Error Class Distribution by Category:\n")
|
| 335 |
logf.write(confusion.to_string())
|
| 336 |
logf.write("\n")
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
# NEW: save detailed results
|
| 342 |
-
df.to_csv("evaluation_results_detailed.csv", index=False, encoding="utf-8")
|
| 343 |
-
|
| 344 |
-
# NEW: per-category averages
|
| 345 |
-
try:
|
| 346 |
-
cat_means = df.groupby("category")["answer_correctness"].mean().reset_index()
|
| 347 |
-
print("\nπ Correctness by Category:")
|
| 348 |
-
print(cat_means.to_string(index=False))
|
| 349 |
-
cat_means.to_csv("evaluation_correctness_by_category.csv", index=False)
|
| 350 |
-
except Exception as e:
|
| 351 |
-
print(f"WARNING: Could not compute category breakdown: {e}")
|
| 352 |
-
|
| 353 |
-
# NEW: confusion-style matrix
|
| 354 |
-
try:
|
| 355 |
-
confusion = pd.crosstab(df.get("category", []), df.get("error_class", []),
|
| 356 |
-
rownames=["Category"], colnames=["Error Class"], dropna=False)
|
| 357 |
-
print("\nπ Error Class Distribution by Category:")
|
| 358 |
-
print(confusion.to_string())
|
| 359 |
-
confusion.to_csv("evaluation_confusion_matrix.csv")
|
| 360 |
-
except Exception as e:
|
| 361 |
-
print(f"WARNING: Could not build confusion matrix: {e}")
|
| 362 |
-
|
| 363 |
|
| 364 |
pct = df["route_correct"].value_counts(normalize=True).get("β
", 0) * 100
|
| 365 |
to_f = lambda s: pd.to_numeric(s, errors="coerce")
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
cr_mean = to_f(df["context_recall"]).mean()
|
| 369 |
-
faith_mean = to_f(df["faithfulness"]).mean()
|
| 370 |
-
correct_mean = to_f(df["answer_correctness"]).mean()
|
| 371 |
-
rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0
|
| 372 |
-
|
| 373 |
-
summary_text = f"""
|
| 374 |
-
## Evaluation Summary
|
| 375 |
-
- **Routing Accuracy**: {pct:.2f}%
|
| 376 |
-
- **Behaviour F1 (avg)**: {(to_f(df["behavior_f1"]).mean() * 100):.2f}%
|
| 377 |
-
- **Emotion F1 (avg)**: {(to_f(df["emotion_f1"]).mean() * 100):.2f}%
|
| 378 |
-
- **Topic F1 (avg)**: {(to_f(df["topic_f1"]).mean() * 100):.2f}%
|
| 379 |
-
- **Context F1 (avg)**: {(to_f(df["context_f1"]).mean() * 100):.2f}%
|
| 380 |
-
- **RAG: Context Precision**: {"N/A" if pd.isna(cp_mean) else f'{(cp_mean * 100):.1f}%'}
|
| 381 |
-
- **RAG: Context Recall**: {"N/A" if pd.isna(cr_mean) else f'{(cr_mean * 100):.1f}%'}
|
| 382 |
-
- **RAG: Faithfulness (LLM-judge)**: {"N/A" if pd.isna(faith_mean) else f'{(faith_mean * 100):.1f}%'}
|
| 383 |
-
- **RAG: Answer Correctness (LLM-judge)**: {"N/A" if pd.isna(correct_mean) else f'{(correct_mean * 100):.1f}%'}
|
| 384 |
-
- **RAG Answers w/ Sources**: {rag_with_sources_pct:.1f}%
|
| 385 |
-
- **RAG: Avg Latency (ms)**: {to_f(df["latency_ms"]).mean():.1f}
|
| 386 |
-
"""
|
| 387 |
-
df_display = df.rename(columns={
|
| 388 |
-
"context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall",
|
| 389 |
-
"answer_correctness": "Answer Correct.", "faithfulness": "Faithfulness",
|
| 390 |
-
"behavior_f1": "Behav. F1", "emotion_f1": "Emo. F1", "topic_f1": "Topic F1", "context_f1": "Ctx. F1"
|
| 391 |
-
})
|
| 392 |
table_rows = df_display.values.tolist()
|
| 393 |
headers = df_display.columns.tolist()
|
| 394 |
-
|
| 395 |
-
summary_text = "No valid test fixtures found to evaluate."
|
| 396 |
-
table_rows, headers = [], []
|
| 397 |
-
|
| 398 |
return summary_text, table_rows, headers
|
|
|
|
|
|
|
|
|
| 131 |
return "omission"
|
| 132 |
return "contradiction"
|
| 133 |
|
| 134 |
+
## NEW
|
| 135 |
+
# In evaluate.py
|
| 136 |
|
| 137 |
def run_comprehensive_evaluation(
|
| 138 |
+
vs_general: "Chroma",
|
| 139 |
+
nlu_vectorstore: "Chroma",
|
| 140 |
+
config: Dict[str, Any],
|
| 141 |
+
storage_path: Path
|
| 142 |
):
|
| 143 |
global test_fixtures
|
| 144 |
if not test_fixtures:
|
| 145 |
+
# The return signature is now back to 3 items.
|
| 146 |
+
return "No test fixtures loaded.", [], []
|
| 147 |
+
|
| 148 |
+
vs_personal_test = None
|
| 149 |
+
personal_context_docs = []
|
| 150 |
+
personal_context_file = "sample_data/1 Complaints of a Dutiful Daughter.txt"
|
| 151 |
+
|
| 152 |
+
if os.path.exists(personal_context_file):
|
| 153 |
+
print(f"Found personal context file for evaluation: '{personal_context_file}'")
|
| 154 |
+
with open(personal_context_file, "r", encoding="utf-8") as f:
|
| 155 |
+
content = f.read()
|
| 156 |
+
doc = Document(page_content=content, metadata={"source": os.path.basename(personal_context_file)})
|
| 157 |
+
personal_context_docs.append(doc)
|
| 158 |
+
else:
|
| 159 |
+
print(f"WARNING: Personal context file not found at '{personal_context_file}'. Factual tests will likely fail.")
|
| 160 |
|
| 161 |
+
vs_personal_test = build_or_load_vectorstore(
|
| 162 |
+
personal_context_docs,
|
| 163 |
+
index_path="tmp/eval_personal_index",
|
| 164 |
+
is_personal=True
|
| 165 |
+
)
|
| 166 |
+
print(f"Successfully created temporary personal vectorstore with {len(personal_context_docs)} document(s) for this evaluation run.")
|
| 167 |
+
|
| 168 |
def _norm(label: str) -> str:
|
| 169 |
label = (label or "").strip().lower()
|
| 170 |
return "factual_question" if "factual" in label else label
|
| 171 |
|
| 172 |
print("Starting comprehensive evaluation...")
|
| 173 |
results: List[Dict[str, Any]] = []
|
|
|
|
|
|
|
| 174 |
total_fixtures = len(test_fixtures)
|
| 175 |
print(f"\nπ STARTING EVALUATION on {total_fixtures} test cases...")
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
for i, fx in enumerate(test_fixtures):
|
|
|
|
| 178 |
test_id = fx.get("test_id", "N/A")
|
|
|
|
| 179 |
print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
|
| 180 |
|
|
|
|
| 181 |
turns = fx.get("turns") or []
|
| 182 |
api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
|
| 183 |
query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
|
| 184 |
if not query: continue
|
| 185 |
|
| 186 |
+
print(f'Query: "{query}"')
|
| 187 |
+
|
| 188 |
ground_truth = fx.get("ground_truth", {})
|
| 189 |
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
|
| 190 |
expected_tags = ground_truth.get("expected_tags", {})
|
|
|
|
| 191 |
actual_route = _norm(route_query_type(query))
|
| 192 |
route_correct = (actual_route == expected_route)
|
| 193 |
|
|
|
|
| 214 |
}
|
| 215 |
|
| 216 |
current_test_role = fx.get("test_role", "patient")
|
| 217 |
+
rag_chain = make_rag_chain(
|
| 218 |
+
vs_general, vs_personal_test, nlu_vectorstore=nlu_vectorstore,
|
| 219 |
+
config=config, role=current_test_role, for_evaluation=True
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
t0 = time.time()
|
| 223 |
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
|
| 224 |
latency_ms = round((time.time() - t0) * 1000.0, 1)
|
| 225 |
answer_text = response.get("answer", "ERROR")
|
| 226 |
+
ground_truth_answer = ground_truth.get("ground_truth_answer")
|
| 227 |
+
|
| 228 |
+
category = _categorize_test(test_id)
|
| 229 |
+
error_class = _classify_error(ground_truth_answer, answer_text)
|
| 230 |
|
| 231 |
expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
|
| 232 |
raw_sources = response.get("sources", [])
|
| 233 |
actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))
|
| 234 |
|
|
|
|
| 235 |
print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
|
| 236 |
print(f" - Expected: {sorted(list(expected_sources_set))}")
|
| 237 |
print(f" - Actual: {sorted(list(actual_sources_set))}")
|
| 238 |
|
| 239 |
true_positives = expected_sources_set.intersection(actual_sources_set)
|
| 240 |
false_positives = actual_sources_set - expected_sources_set
|
| 241 |
+
false_negatives = expected_sources_set - actual_sources_set
|
| 242 |
|
| 243 |
if not false_positives and not false_negatives:
|
| 244 |
print(" - Result: β
Perfect Match!")
|
|
|
|
| 248 |
if false_negatives:
|
| 249 |
print(f" - π» False Negatives (hurts recall): {sorted(list(false_negatives))}")
|
| 250 |
print("-"*59 + "\n")
|
| 251 |
+
|
|
|
|
| 252 |
context_precision, context_recall = 0.0, 0.0
|
| 253 |
if expected_sources_set or actual_sources_set:
|
| 254 |
+
tp = len(expected_sources_set.intersection(actual_sources_set))
|
| 255 |
+
if len(actual_sources_set) > 0: context_precision = tp / len(actual_sources_set)
|
| 256 |
+
if len(expected_sources_set) > 0: context_recall = tp / len(expected_sources_set)
|
| 257 |
elif not expected_sources_set and not actual_sources_set:
|
| 258 |
context_precision, context_recall = 1.0, 1.0
|
| 259 |
|
| 260 |
+
print("\n" + "-"*20 + " ANSWER & CORRECTNESS EVALUATION " + "-"*20)
|
| 261 |
+
print(f" - Ground Truth Answer: {ground_truth_answer}")
|
| 262 |
+
print(f" - Generated Answer: {answer_text}")
|
| 263 |
+
print("-" * 59)
|
| 264 |
|
| 265 |
+
answer_correctness_score = None
|
| 266 |
if ground_truth_answer and "ERROR" not in answer_text:
|
| 267 |
try:
|
| 268 |
judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
|
| 269 |
+
print(f" - Judge Prompt Sent:\n{judge_msg}")
|
| 270 |
raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
|
| 271 |
+
print(f" - Judge Raw Response: {raw_correctness}")
|
| 272 |
correctness_data = _parse_judge_json(raw_correctness)
|
|
|
|
| 273 |
if correctness_data and "correctness_score" in correctness_data:
|
| 274 |
answer_correctness_score = float(correctness_data["correctness_score"])
|
| 275 |
+
print(f" - Final Score: {answer_correctness_score}")
|
| 276 |
except Exception as e:
|
| 277 |
print(f"ERROR during answer correctness judging: {e}")
|
| 278 |
|
|
|
|
|
|
|
|
|
|
| 279 |
faithfulness = None
|
| 280 |
source_docs = response.get("source_documents", [])
|
| 281 |
if source_docs and "ERROR" not in answer_text:
|
|
|
|
| 295 |
sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
|
| 296 |
results.append({
|
| 297 |
"test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
|
|
|
|
|
|
|
|
|
|
| 298 |
"route_correct": "β
" if route_correct else "β", "expected_route": expected_route, "actual_route": actual_route,
|
| 299 |
"behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
|
| 300 |
"topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
|
|
|
|
| 302 |
"latency_ms": latency_ms, "faithfulness": faithfulness,
|
| 303 |
"context_precision": context_precision, "context_recall": context_recall,
|
| 304 |
"answer_correctness": answer_correctness_score,
|
| 305 |
+
"category": category,
|
| 306 |
+
"error_class": error_class
|
| 307 |
})
|
| 308 |
|
| 309 |
df = pd.DataFrame(results)
|
| 310 |
+
summary_text, table_rows, headers = "No valid test fixtures found to evaluate.", [], []
|
| 311 |
+
|
| 312 |
if not df.empty:
|
| 313 |
+
cols = ["test_id", "title", "route_correct", "expected_route", "actual_route", "context_precision", "context_recall", "faithfulness", "answer_correctness", "behavior_f1", "emotion_f1", "topic_f1", "context_f1", "source_count", "latency_ms", "sources", "generated_answer", "category", "error_class"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
df = df[[c for c in cols if c in df.columns]]
|
| 315 |
+
output_path = "evaluation_results.csv"
|
| 316 |
df.to_csv(output_path, index=False, encoding="utf-8")
|
| 317 |
print(f"Evaluation results saved to {output_path}")
|
| 318 |
|
| 319 |
+
log_path = storage_path / "evaluation_log.txt"
|
| 320 |
+
with open(log_path, "w", encoding="utf-8") as logf:
|
| 321 |
+
logf.write("===== Detailed Evaluation Run =====\n")
|
| 322 |
+
df_string = df.to_string(index=False)
|
| 323 |
+
logf.write(df_string)
|
|
|
|
| 324 |
logf.write("\n\n")
|
| 325 |
|
| 326 |
+
try:
|
| 327 |
+
cat_means = df.groupby("category")["answer_correctness"].mean().reset_index()
|
| 328 |
+
print("\nπ Correctness by Category:")
|
| 329 |
+
print(cat_means.to_string(index=False))
|
|
|
|
|
|
|
| 330 |
logf.write("\nπ Correctness by Category:\n")
|
| 331 |
logf.write(cat_means.to_string(index=False))
|
| 332 |
logf.write("\n")
|
| 333 |
+
except Exception as e:
|
| 334 |
+
print(f"WARNING: Could not compute category breakdown: {e}")
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
confusion = pd.crosstab(df["category"], df["error_class"], rownames=["Category"], colnames=["Error Class"], dropna=False)
|
| 338 |
+
print("\nπ Error Class Distribution by Category:")
|
| 339 |
+
print(confusion.to_string())
|
|
|
|
|
|
|
|
|
|
| 340 |
logf.write("\nπ Error Class Distribution by Category:\n")
|
| 341 |
logf.write(confusion.to_string())
|
| 342 |
logf.write("\n")
|
| 343 |
+
except Exception as e:
|
| 344 |
+
print(f"WARNING: Could not build confusion matrix: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
pct = df["route_correct"].value_counts(normalize=True).get("β
", 0) * 100
|
| 347 |
to_f = lambda s: pd.to_numeric(s, errors="coerce")
|
| 348 |
+
summary_text = f"""## Evaluation Summary\n- **Routing Accuracy**: {pct:.2f}%\n- **RAG: Context Precision**: {(to_f(df["context_precision"]).mean() * 100):.1f}%\n- **RAG: Context Recall**: {(to_f(df["context_recall"]).mean() * 100):.1f}%\n- **RAG: Answer Correctness (LLM-judge)**: {(to_f(df["answer_correctness"]).mean() * 100):.1f}%"""
|
| 349 |
+
df_display = df.rename(columns={"context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
table_rows = df_display.values.tolist()
|
| 351 |
headers = df_display.columns.tolist()
|
| 352 |
+
|
|
|
|
|
|
|
|
|
|
| 353 |
return summary_text, table_rows, headers
|
| 354 |
+
|
| 355 |
+
## END
|