Spaces:
Sleeping
Sleeping
Create agent.py
Browse files- alz_companion/agent.py +455 -0
alz_companion/agent.py
ADDED
|
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import base64
|
| 5 |
+
import time
|
| 6 |
+
import tempfile
|
| 7 |
+
import re # <-- ADD THIS LINE
|
| 8 |
+
|
| 9 |
+
from typing import List, Dict, Any, Optional
|
| 10 |
+
|
| 11 |
+
# OpenAI for LLM (optional)
|
| 12 |
+
try:
|
| 13 |
+
from openai import OpenAI
|
| 14 |
+
except Exception: # pragma: no cover
|
| 15 |
+
OpenAI = None # type: ignore
|
| 16 |
+
|
| 17 |
+
# LangChain & RAG
|
| 18 |
+
from langchain.schema import Document
|
| 19 |
+
from langchain_community.vectorstores import FAISS
|
| 20 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 21 |
+
|
| 22 |
+
# TTS
|
| 23 |
+
try:
|
| 24 |
+
from gtts import gTTS
|
| 25 |
+
except Exception: # pragma: no cover
|
| 26 |
+
gTTS = None # type: ignore
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
from .prompts import (
|
| 30 |
+
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
|
| 31 |
+
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines,
|
| 32 |
+
# --- Import the new decomposed NLU prompts ---
|
| 33 |
+
NLU_ROUTER_PROMPT, SPECIALIST_CLASSIFIER_PROMPT,
|
| 34 |
+
EMOTIONAL_SUPPORT_EXAMPLES, PRACTICAL_PLANNING_EXAMPLES,
|
| 35 |
+
# Other templates
|
| 36 |
+
ROUTER_PROMPT,
|
| 37 |
+
ANSWER_TEMPLATE_FACTUAL,
|
| 38 |
+
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE,
|
| 39 |
+
ANSWER_TEMPLATE_GENERAL,
|
| 40 |
+
QUERY_EXPANSION_PROMPT
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# -----------------------------
|
| 44 |
+
# Multimodal Processing Functions
|
| 45 |
+
# -----------------------------
|
| 46 |
+
|
| 47 |
+
def _openai_client() -> Optional[OpenAI]:
|
| 48 |
+
api_key = os.getenv("OPENAI_API_KEY", "").strip()
|
| 49 |
+
return OpenAI(api_key=api_key) if api_key and OpenAI else None
|
| 50 |
+
|
| 51 |
+
# In agent.py
|
| 52 |
+
|
| 53 |
+
def describe_image(image_path: str) -> str:
|
| 54 |
+
"""Uses a vision model to describe an image for context."""
|
| 55 |
+
client = _openai_client()
|
| 56 |
+
if not client:
|
| 57 |
+
return "(Image description failed: OpenAI API key not configured.)"
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
# --- FIX START ---
|
| 61 |
+
# Determine the MIME type based on the file extension
|
| 62 |
+
extension = os.path.splitext(image_path)[1].lower()
|
| 63 |
+
if extension == ".png":
|
| 64 |
+
mime_type = "image/png"
|
| 65 |
+
elif extension in [".jpg", ".jpeg"]:
|
| 66 |
+
mime_type = "image/jpeg"
|
| 67 |
+
elif extension == ".gif":
|
| 68 |
+
mime_type = "image/gif"
|
| 69 |
+
elif extension == ".webp":
|
| 70 |
+
mime_type = "image/webp"
|
| 71 |
+
else:
|
| 72 |
+
# Default to JPEG, but this handles the most common cases
|
| 73 |
+
mime_type = "image/jpeg"
|
| 74 |
+
# --- FIX END ---
|
| 75 |
+
|
| 76 |
+
with open(image_path, "rb") as image_file:
|
| 77 |
+
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
|
| 78 |
+
|
| 79 |
+
response = client.chat.completions.create(
|
| 80 |
+
model="gpt-4o",
|
| 81 |
+
messages=[
|
| 82 |
+
{
|
| 83 |
+
"role": "user",
|
| 84 |
+
"content": [
|
| 85 |
+
{"type": "text", "text": "Describe this image in a concise, factual way for a memory journal. Focus on people, places, and key objects. For example: 'A photo of John and Mary smiling on a bench at the park.'"},
|
| 86 |
+
{
|
| 87 |
+
"type": "image_url",
|
| 88 |
+
# Use the dynamically determined MIME type
|
| 89 |
+
"image_url": {"url": f"data:{mime_type};base64,{base64_image}"}
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
}
|
| 93 |
+
],
|
| 94 |
+
max_tokens=100,
|
| 95 |
+
)
|
| 96 |
+
return response.choices[0].message.content or "No description available."
|
| 97 |
+
except Exception as e:
|
| 98 |
+
return f"[Image description error: {e}]"
|
| 99 |
+
|
| 100 |
+
# -----------------------------
|
| 101 |
+
# NLU Classification Function
|
| 102 |
+
# -----------------------------
|
| 103 |
+
|
| 104 |
+
def detect_tags_from_query(query: str, behavior_options: list, emotion_options: list, topic_options: list, context_options: list, settings: dict = None) -> Dict[str, Any]:
|
| 105 |
+
"""Uses a two-step NLU process: Route -> Select Examples -> Classify."""
|
| 106 |
+
|
| 107 |
+
# --- STEP 1: Route the query to determine the primary goal ---
|
| 108 |
+
router_prompt = NLU_ROUTER_PROMPT.format(query=query)
|
| 109 |
+
router_messages = [{"role": "user", "content": router_prompt}]
|
| 110 |
+
primary_goal = call_llm(router_messages, temperature=0.0).strip().lower()
|
| 111 |
+
|
| 112 |
+
if "practical" in primary_goal:
|
| 113 |
+
selected_examples = PRACTICAL_PLANNING_EXAMPLES
|
| 114 |
+
goal_for_prompt = "Practical Planning"
|
| 115 |
+
else:
|
| 116 |
+
selected_examples = EMOTIONAL_SUPPORT_EXAMPLES
|
| 117 |
+
goal_for_prompt = "Emotional Support"
|
| 118 |
+
|
| 119 |
+
if settings and settings.get("debug_mode"):
|
| 120 |
+
print(f"\n--- NLU Router ---\nGoal: {goal_for_prompt}\n------------------\n")
|
| 121 |
+
|
| 122 |
+
# --- STEP 2: Use the Specialist Classifier with selected examples ---
|
| 123 |
+
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
|
| 124 |
+
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
|
| 125 |
+
topic_str = ", ".join(f'"{opt}"' for opt in topic_options if opt != "None")
|
| 126 |
+
context_str = ", ".join(f'"{opt}"' for opt in context_options if opt != "None")
|
| 127 |
+
|
| 128 |
+
prompt = SPECIALIST_CLASSIFIER_PROMPT.format(
|
| 129 |
+
primary_goal=goal_for_prompt,
|
| 130 |
+
examples=selected_examples,
|
| 131 |
+
behavior_options=behavior_str,
|
| 132 |
+
emotion_options=emotion_str,
|
| 133 |
+
topic_options=topic_str,
|
| 134 |
+
context_options=context_str,
|
| 135 |
+
query=query
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
messages = [{"role": "system", "content": "You are a helpful NLU classification assistant. Follow the instructions precisely."}, {"role": "user", "content": prompt}]
|
| 139 |
+
response_str = call_llm(messages, temperature=0.1)
|
| 140 |
+
|
| 141 |
+
if settings and settings.get("debug_mode"):
|
| 142 |
+
print(f"\n--- NLU Specialist Full Response ---\n{response_str}\n----------------------------------\n")
|
| 143 |
+
|
| 144 |
+
result_dict = {
|
| 145 |
+
"detected_behaviors": [], "detected_emotion": "None",
|
| 146 |
+
"detected_topic": "None", "detected_contexts": []
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
# --- ROBUST PARSING LOGIC ---
|
| 151 |
+
start_brace = response_str.find('{')
|
| 152 |
+
end_brace = response_str.rfind('}')
|
| 153 |
+
|
| 154 |
+
if start_brace != -1 and end_brace != -1 and end_brace > start_brace:
|
| 155 |
+
json_str = response_str[start_brace : end_brace + 1]
|
| 156 |
+
result = json.loads(json_str)
|
| 157 |
+
|
| 158 |
+
behaviors = result.get("detected_behaviors")
|
| 159 |
+
result_dict["detected_behaviors"] = [b for b in behaviors if b in behavior_options] if behaviors else []
|
| 160 |
+
|
| 161 |
+
emotion = result.get("detected_emotion")
|
| 162 |
+
result_dict["detected_emotion"] = emotion if emotion in emotion_options else "None"
|
| 163 |
+
|
| 164 |
+
topic = result.get("detected_topic")
|
| 165 |
+
result_dict["detected_topic"] = topic if topic in topic_options else "None"
|
| 166 |
+
|
| 167 |
+
contexts = result.get("detected_contexts")
|
| 168 |
+
result_dict["detected_contexts"] = [c for c in contexts if c in context_options] if contexts else []
|
| 169 |
+
|
| 170 |
+
return result_dict
|
| 171 |
+
except (json.JSONDecodeError, AttributeError) as e:
|
| 172 |
+
print(f"ERROR parsing CoT JSON: {e}")
|
| 173 |
+
return result_dict
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# -----------------------------
|
| 177 |
+
# Embeddings & VectorStore
|
| 178 |
+
# -----------------------------
|
| 179 |
+
|
| 180 |
+
def _default_embeddings():
|
| 181 |
+
"""Lightweight, widely available model."""
|
| 182 |
+
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 183 |
+
return HuggingFaceEmbeddings(model_name=model_name)
|
| 184 |
+
|
| 185 |
+
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
|
| 186 |
+
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
| 187 |
+
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
|
| 188 |
+
try:
|
| 189 |
+
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
|
| 190 |
+
except Exception:
|
| 191 |
+
pass
|
| 192 |
+
|
| 193 |
+
if is_personal and not docs:
|
| 194 |
+
docs = [Document(page_content="(This is the start of the personal memory journal.)", metadata={"source": "placeholder"})]
|
| 195 |
+
|
| 196 |
+
vs = FAISS.from_documents(docs, _default_embeddings())
|
| 197 |
+
vs.save_local(index_path)
|
| 198 |
+
return vs
|
| 199 |
+
|
| 200 |
+
def texts_from_jsonl(path: str) -> List[Document]:
|
| 201 |
+
out: List[Document] = []
|
| 202 |
+
try:
|
| 203 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 204 |
+
for i, line in enumerate(f):
|
| 205 |
+
line = line.strip()
|
| 206 |
+
if not line: continue
|
| 207 |
+
obj = json.loads(line)
|
| 208 |
+
txt = obj.get("text") or ""
|
| 209 |
+
if not isinstance(txt, str) or not txt.strip(): continue
|
| 210 |
+
|
| 211 |
+
# fix bugs by adding tags for topic and context
|
| 212 |
+
md = {"source": os.path.basename(path), "chunk": i}
|
| 213 |
+
for k in ("behaviors", "emotion", "topic_tags", "context_tags"):
|
| 214 |
+
if k in obj and obj[k]: # Ensure the key exists and is not empty
|
| 215 |
+
md[k] = obj[k]
|
| 216 |
+
out.append(Document(page_content=txt, metadata=md))
|
| 217 |
+
|
| 218 |
+
except Exception:
|
| 219 |
+
return []
|
| 220 |
+
return out
|
| 221 |
+
|
| 222 |
+
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
|
| 223 |
+
docs: List[Document] = []
|
| 224 |
+
for p in (sample_paths or []):
|
| 225 |
+
try:
|
| 226 |
+
if p.lower().endswith(".jsonl"):
|
| 227 |
+
docs.extend(texts_from_jsonl(p))
|
| 228 |
+
else:
|
| 229 |
+
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
|
| 230 |
+
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
|
| 231 |
+
except Exception:
|
| 232 |
+
continue
|
| 233 |
+
if not docs:
|
| 234 |
+
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
|
| 235 |
+
return build_or_load_vectorstore(docs, index_path=index_path)
|
| 236 |
+
|
| 237 |
+
# -----------------------------
|
| 238 |
+
# LLM Call
|
| 239 |
+
# -----------------------------
|
| 240 |
+
# updated the detect_tags_from_query function to call call_llm with a new stop argument,
|
| 241 |
+
# but I failed to update the call_llm function itself to accept that argument.
|
| 242 |
+
# Now fix call_llm function:
|
| 243 |
+
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None) -> str:
|
| 244 |
+
"""Call OpenAI Chat Completions if available; else return a fallback."""
|
| 245 |
+
client = _openai_client()
|
| 246 |
+
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
| 247 |
+
if not client:
|
| 248 |
+
return "(Offline Mode: OpenAI API key not configured.)"
|
| 249 |
+
try:
|
| 250 |
+
# Prepare arguments for the API call to handle the optional 'stop' parameter
|
| 251 |
+
api_args = {
|
| 252 |
+
"model": model,
|
| 253 |
+
"messages": messages,
|
| 254 |
+
"temperature": float(temperature if temperature is not None else 0.6)
|
| 255 |
+
}
|
| 256 |
+
if stop:
|
| 257 |
+
api_args["stop"] = stop
|
| 258 |
+
|
| 259 |
+
resp = client.chat.completions.create(**api_args)
|
| 260 |
+
return (resp.choices[0].message.content or "").strip()
|
| 261 |
+
except Exception as e:
|
| 262 |
+
return f"[LLM API Error: {e}]"
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# -----------------------------
|
| 266 |
+
# Prompting & RAG Chain
|
| 267 |
+
# -----------------------------
|
| 268 |
+
|
| 269 |
+
def _format_sources(docs: List[Document]) -> List[str]:
|
| 270 |
+
return list(set(d.metadata.get("source", "unknown") for d in docs))
|
| 271 |
+
|
| 272 |
+
# In agent.py, replace the existing make_rag_chain function with this new one to handle general & specific conversations .
|
| 273 |
+
# The logic for the "factual_question" path needs to be updated to perform the expansion query
|
| 274 |
+
|
| 275 |
+
def make_rag_chain(
|
| 276 |
+
vs_general: FAISS,
|
| 277 |
+
vs_personal: FAISS,
|
| 278 |
+
*,
|
| 279 |
+
role: str = "patient",
|
| 280 |
+
temperature: float = 0.6,
|
| 281 |
+
language: str = "English",
|
| 282 |
+
patient_name: str = "the patient",
|
| 283 |
+
caregiver_name: str = "the caregiver",
|
| 284 |
+
tone: str = "warm",
|
| 285 |
+
):
|
| 286 |
+
"""Returns a callable that performs the complete, intelligent RAG process."""
|
| 287 |
+
|
| 288 |
+
def _format_docs(docs: List[Document], default_msg: str) -> str:
|
| 289 |
+
if not docs: return default_msg
|
| 290 |
+
unique_docs = {doc.page_content: doc for doc in docs}.values()
|
| 291 |
+
return "\n".join([f"- {d.page_content.strip()}" for d in unique_docs])
|
| 292 |
+
|
| 293 |
+
# def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None) -> Dict[str, Any]:
|
| 294 |
+
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None, topic_tag: Optional[str] = None, context_tags: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 295 |
+
|
| 296 |
+
router_messages = [{"role": "user", "content": ROUTER_PROMPT.format(query=query)}]
|
| 297 |
+
query_type = call_llm(router_messages, temperature=0.0).strip().lower()
|
| 298 |
+
print(f"Query classified as: {query_type}")
|
| 299 |
+
|
| 300 |
+
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, patient_name=patient_name or "the patient", caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS)
|
| 301 |
+
messages = [{"role": "system", "content": system_message}]
|
| 302 |
+
messages.extend(chat_history)
|
| 303 |
+
|
| 304 |
+
# --- NEW 'general_knowledge_question' PATH ---
|
| 305 |
+
if "general_knowledge_question" in query_type:
|
| 306 |
+
user_prompt = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE.format(question=query, language=language)
|
| 307 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 308 |
+
answer = call_llm(messages, temperature=temperature)
|
| 309 |
+
return {"answer": answer, "sources": ["General Knowledge"]}
|
| 310 |
+
# --- END NEW PATH ---
|
| 311 |
+
|
| 312 |
+
elif "factual_question" in query_type:
|
| 313 |
+
# ... (This entire section for query expansion and factual search remains the same)
|
| 314 |
+
print(f"Performing query expansion for: '{query}'")
|
| 315 |
+
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
|
| 316 |
+
expansion_response = call_llm([{"role": "user", "content": expansion_prompt}], temperature=0.1)
|
| 317 |
+
|
| 318 |
+
try:
|
| 319 |
+
clean_response = expansion_response.strip().replace("```json", "").replace("```", "")
|
| 320 |
+
expanded_queries = json.loads(clean_response)
|
| 321 |
+
search_queries = [query] + expanded_queries
|
| 322 |
+
except json.JSONDecodeError:
|
| 323 |
+
search_queries = [query]
|
| 324 |
+
|
| 325 |
+
print(f"Searching with queries: {search_queries}")
|
| 326 |
+
retriever_personal = vs_personal.as_retriever(search_kwargs={"k": 2})
|
| 327 |
+
retriever_general = vs_general.as_retriever(search_kwargs={"k": 2})
|
| 328 |
+
|
| 329 |
+
all_docs = []
|
| 330 |
+
for q in search_queries:
|
| 331 |
+
all_docs.extend(retriever_personal.invoke(q))
|
| 332 |
+
all_docs.extend(retriever_general.invoke(q))
|
| 333 |
+
|
| 334 |
+
context = _format_docs(all_docs, "(No relevant information found in the memory journal.)")
|
| 335 |
+
|
| 336 |
+
user_prompt = ANSWER_TEMPLATE_FACTUAL.format(context=context, question=query, language=language)
|
| 337 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 338 |
+
answer = call_llm(messages, temperature=temperature)
|
| 339 |
+
return {"answer": answer, "sources": _format_sources(all_docs)}
|
| 340 |
+
|
| 341 |
+
elif "general_conversation" in query_type:
|
| 342 |
+
user_prompt = ANSWER_TEMPLATE_GENERAL.format(question=query, language=language)
|
| 343 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 344 |
+
answer = call_llm(messages, temperature=temperature)
|
| 345 |
+
return {"answer": answer, "sources": []}
|
| 346 |
+
|
| 347 |
+
else: # Default to the original caregiving logic
|
| 348 |
+
# ... (This entire section for caregiving scenarios remains the same)
|
| 349 |
+
search_filter = {}
|
| 350 |
+
if scenario_tag and scenario_tag != "None":
|
| 351 |
+
search_filter["behaviors"] = scenario_tag.lower()
|
| 352 |
+
if emotion_tag and emotion_tag != "None":
|
| 353 |
+
search_filter["emotion"] = emotion_tag.lower()
|
| 354 |
+
# fix bug by adding topic tag and context tag
|
| 355 |
+
if topic_tag and topic_tag != "None": # <-- ADD THESE TWO LINES
|
| 356 |
+
search_filter["topic_tags"] = topic_tag.lower()
|
| 357 |
+
if context_tags: # <-- ADD THESE TWO LINES
|
| 358 |
+
search_filter["context_tags"] = {"in": [tag.lower() for tag in context_tags]}
|
| 359 |
+
|
| 360 |
+
# --- Robust Search Strategy ---
|
| 361 |
+
# 1. Start with a general, unfiltered search to always get text-based matches.
|
| 362 |
+
retriever_personal = vs_personal.as_retriever(search_kwargs={"k": 3})
|
| 363 |
+
retriever_general = vs_general.as_retriever(search_kwargs={"k": 3})
|
| 364 |
+
|
| 365 |
+
personal_docs = retriever_personal.invoke(query)
|
| 366 |
+
general_docs = retriever_general.invoke(query)
|
| 367 |
+
|
| 368 |
+
# 2. If filters exist, perform a second, more specific search and add the results.
|
| 369 |
+
if search_filter:
|
| 370 |
+
print(f"Performing additional search with filter: {search_filter}")
|
| 371 |
+
personal_docs.extend(vs_personal.similarity_search(query, k=3, filter=search_filter))
|
| 372 |
+
general_docs.extend(vs_general.similarity_search(query, k=3, filter=search_filter))
|
| 373 |
+
|
| 374 |
+
# 3. Combine and de-duplicate the results to get the best of both searches.
|
| 375 |
+
all_personal_docs = list({doc.page_content: doc for doc in personal_docs}.values())
|
| 376 |
+
all_general_docs = list({doc.page_content: doc for doc in general_docs}.values())
|
| 377 |
+
|
| 378 |
+
# 4. Define the context variables based on the new, combined results.
|
| 379 |
+
personal_context = _format_docs(all_personal_docs, "(No relevant personal memories found.)")
|
| 380 |
+
general_context = _format_docs(all_general_docs, "(No general guidance found.)")
|
| 381 |
+
|
| 382 |
+
first_emotion = None
|
| 383 |
+
all_docs_care = all_personal_docs + all_general_docs
|
| 384 |
+
|
| 385 |
+
# -- end of Robust Search Strategy
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
for doc in all_docs_care:
|
| 389 |
+
if "emotion" in doc.metadata and doc.metadata["emotion"]:
|
| 390 |
+
emotion_data = doc.metadata["emotion"]
|
| 391 |
+
if isinstance(emotion_data, list): first_emotion = emotion_data[0]
|
| 392 |
+
else: first_emotion = emotion_data
|
| 393 |
+
if first_emotion: break
|
| 394 |
+
|
| 395 |
+
emotions_context = render_emotion_guidelines(first_emotion or emotion_tag)
|
| 396 |
+
is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None)
|
| 397 |
+
template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM
|
| 398 |
+
|
| 399 |
+
if template == ANSWER_TEMPLATE_ADQ:
|
| 400 |
+
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=scenario_tag, emotions_context=emotions_context, role=role, language=language)
|
| 401 |
+
else:
|
| 402 |
+
combined_context = f"General Guidance:\n{general_context}\n\nPersonal Memories:\n{personal_context}"
|
| 403 |
+
user_prompt = template.format(context=combined_context, question=query, language=language)
|
| 404 |
+
|
| 405 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 406 |
+
answer = call_llm(messages, temperature=temperature)
|
| 407 |
+
|
| 408 |
+
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
|
| 409 |
+
if scenario_tag and scenario_tag.lower() in high_risk_scenarios:
|
| 410 |
+
answer += f"\n\n---\n{RISK_FOOTER}"
|
| 411 |
+
|
| 412 |
+
return {"answer": answer, "sources": _format_sources(all_docs_care)}
|
| 413 |
+
|
| 414 |
+
return _answer_fn
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
# Fix bug by adding topic tag ... how about context tag??
|
| 418 |
+
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
|
| 419 |
+
if not callable(chain): return {"answer": "[Error: RAG chain is not callable]", "sources": []}
|
| 420 |
+
chat_history = kwargs.get("chat_history", [])
|
| 421 |
+
scenario_tag = kwargs.get("scenario_tag")
|
| 422 |
+
emotion_tag = kwargs.get("emotion_tag")
|
| 423 |
+
topic_tag = kwargs.get("topic_tag") # <-- ADD THIS LINE
|
| 424 |
+
context_tags = kwargs.get("context_tags") # <-- ADD THIS LINE
|
| 425 |
+
try:
|
| 426 |
+
return chain(question, chat_history=chat_history, scenario_tag=scenario_tag, emotion_tag=emotion_tag, topic_tag=topic_tag, context_tags=context_tags) # <-- ADD topic_tag and context_tags
|
| 427 |
+
except Exception as e:
|
| 428 |
+
print(f"ERROR in answer_query: {e}")
|
| 429 |
+
return {"answer": f"[Error executing chain: {e}]", "sources": []}
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# -----------------------------
|
| 433 |
+
# TTS & Transcription
|
| 434 |
+
# -----------------------------
|
| 435 |
+
def synthesize_tts(text: str, lang: str = "en"):
|
| 436 |
+
if not text or gTTS is None: return None
|
| 437 |
+
try:
|
| 438 |
+
fd, path = tempfile.mkstemp(suffix=".mp3")
|
| 439 |
+
os.close(fd)
|
| 440 |
+
tts = gTTS(text=text, lang=(lang or "en"))
|
| 441 |
+
tts.save(path)
|
| 442 |
+
return path
|
| 443 |
+
except Exception:
|
| 444 |
+
return None
|
| 445 |
+
|
| 446 |
+
def transcribe_audio(filepath: str, lang: str = "en"):
|
| 447 |
+
client = _openai_client()
|
| 448 |
+
if not client:
|
| 449 |
+
return "[Transcription failed: API key not configured]"
|
| 450 |
+
api_args = {"model": "whisper-1"}
|
| 451 |
+
if lang and lang != "auto":
|
| 452 |
+
api_args["language"] = lang
|
| 453 |
+
with open(filepath, "rb") as audio_file:
|
| 454 |
+
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
|
| 455 |
+
return transcription.text
|