Spaces:
Sleeping
Sleeping
Delete alz_companion/agent.py
Browse files- alz_companion/agent.py +0 -396
alz_companion/agent.py
DELETED
|
@@ -1,396 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
from __future__ import annotations
|
| 3 |
-
import os
|
| 4 |
-
import json
|
| 5 |
-
import base64
|
| 6 |
-
import time
|
| 7 |
-
import tempfile
|
| 8 |
-
import re
|
| 9 |
-
|
| 10 |
-
from typing import List, Dict, Any, Optional
|
| 11 |
-
|
| 12 |
-
try:
|
| 13 |
-
from openai import OpenAI
|
| 14 |
-
except Exception:
|
| 15 |
-
OpenAI = None
|
| 16 |
-
|
| 17 |
-
from langchain.schema import Document
|
| 18 |
-
from langchain_community.vectorstores import FAISS
|
| 19 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 20 |
-
|
| 21 |
-
try:
|
| 22 |
-
from gtts import gTTS
|
| 23 |
-
except Exception:
|
| 24 |
-
gTTS = None
|
| 25 |
-
|
| 26 |
-
from .prompts import (
|
| 27 |
-
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
|
| 28 |
-
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines,
|
| 29 |
-
NLU_ROUTER_PROMPT, SPECIALIST_CLASSIFIER_PROMPT,
|
| 30 |
-
ROUTER_PROMPT,
|
| 31 |
-
ANSWER_TEMPLATE_FACTUAL,
|
| 32 |
-
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE,
|
| 33 |
-
ANSWER_TEMPLATE_GENERAL,
|
| 34 |
-
QUERY_EXPANSION_PROMPT
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
# -----------------------------
|
| 38 |
-
# Multimodal Processing Functions
|
| 39 |
-
# -----------------------------
|
| 40 |
-
|
| 41 |
-
def _openai_client() -> Optional[OpenAI]:
|
| 42 |
-
api_key = os.getenv("OPENAI_API_KEY", "").strip()
|
| 43 |
-
return OpenAI(api_key=api_key) if api_key and OpenAI else None
|
| 44 |
-
|
| 45 |
-
def describe_image(image_path: str) -> str:
|
| 46 |
-
client = _openai_client()
|
| 47 |
-
if not client:
|
| 48 |
-
return "(Image description failed: OpenAI API key not configured.)"
|
| 49 |
-
try:
|
| 50 |
-
extension = os.path.splitext(image_path)[1].lower()
|
| 51 |
-
mime_type = f"image/{'jpeg' if extension in ['.jpg', '.jpeg'] else extension.strip('.')}"
|
| 52 |
-
with open(image_path, "rb") as image_file:
|
| 53 |
-
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
|
| 54 |
-
response = client.chat.completions.create(
|
| 55 |
-
model="gpt-4o",
|
| 56 |
-
messages=[
|
| 57 |
-
{
|
| 58 |
-
"role": "user",
|
| 59 |
-
"content": [
|
| 60 |
-
{"type": "text", "text": "Describe this image concisely for a memory journal. Focus on people, places, and key objects. Example: 'A photo of John and Mary smiling on a bench at the park.'"},
|
| 61 |
-
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}
|
| 62 |
-
],
|
| 63 |
-
}
|
| 64 |
-
], max_tokens=100)
|
| 65 |
-
return response.choices[0].message.content or "No description available."
|
| 66 |
-
except Exception as e:
|
| 67 |
-
return f"[Image description error: {e}]"
|
| 68 |
-
|
| 69 |
-
# -----------------------------
|
| 70 |
-
# NLU Classification Function (Dynamic Version)
|
| 71 |
-
# -----------------------------
|
| 72 |
-
|
| 73 |
-
def detect_tags_from_query(
|
| 74 |
-
query: str,
|
| 75 |
-
nlu_vectorstore: FAISS,
|
| 76 |
-
behavior_options: list,
|
| 77 |
-
emotion_options: list,
|
| 78 |
-
topic_options: list,
|
| 79 |
-
context_options: list,
|
| 80 |
-
settings: dict = None
|
| 81 |
-
) -> Dict[str, Any]:
|
| 82 |
-
"""Uses a dynamic two-step NLU process: Route -> Retrieve Examples -> Classify."""
|
| 83 |
-
|
| 84 |
-
# --- STEP 1: Route the query to determine the primary goal ---
|
| 85 |
-
router_prompt = NLU_ROUTER_PROMPT.format(query=query)
|
| 86 |
-
primary_goal_raw = call_llm([{"role": "user", "content": router_prompt}], temperature=0.0).strip().lower()
|
| 87 |
-
|
| 88 |
-
# --- FIX START: Use separate variables for the filter (lowercase) and the prompt (Title Case) ---
|
| 89 |
-
goal_for_filter = "practical_planning" if "practical" in primary_goal_raw else "emotional_support"
|
| 90 |
-
goal_for_prompt = "Practical Planning" if "practical" in primary_goal_raw else "Emotional Support"
|
| 91 |
-
# --- FIX END ---
|
| 92 |
-
|
| 93 |
-
if settings and settings.get("debug_mode"):
|
| 94 |
-
print(f"\n--- NLU Router ---\nGoal: {goal_for_prompt} (Filter: '{goal_for_filter}')\n------------------\n")
|
| 95 |
-
|
| 96 |
-
# --- STEP 2: Retrieve relevant examples from the NLU vector store ---
|
| 97 |
-
retriever = nlu_vectorstore.as_retriever(
|
| 98 |
-
search_kwargs={"k": 2, "filter": {"primary_goal": goal_for_filter}} # <-- Use the correct lowercase filter
|
| 99 |
-
)
|
| 100 |
-
retrieved_docs = retriever.invoke(query)
|
| 101 |
-
|
| 102 |
-
# Format the retrieved examples for the prompt
|
| 103 |
-
selected_examples = "\n".join(
|
| 104 |
-
f"User Query: \"{doc.page_content}\"\n{json.dumps(doc.metadata['classification'], indent=4)}"
|
| 105 |
-
for doc in retrieved_docs
|
| 106 |
-
)
|
| 107 |
-
if not selected_examples:
|
| 108 |
-
selected_examples = "(No relevant examples found)"
|
| 109 |
-
if settings and settings.get("debug_mode"):
|
| 110 |
-
print("WARNING: NLU retriever found no examples for this query.")
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# --- STEP 3: Use the Specialist Classifier with retrieved examples ---
|
| 114 |
-
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
|
| 115 |
-
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
|
| 116 |
-
topic_str = ", ".join(f'"{opt}"' for opt in topic_options if opt != "None")
|
| 117 |
-
context_str = ", ".join(f'"{opt}"' for opt in context_options if opt != "None")
|
| 118 |
-
|
| 119 |
-
prompt = SPECIALIST_CLASSIFIER_PROMPT.format(
|
| 120 |
-
primary_goal=goal_for_prompt, # Use Title Case for the prompt text
|
| 121 |
-
examples=selected_examples,
|
| 122 |
-
behavior_options=behavior_str,
|
| 123 |
-
emotion_options=emotion_str,
|
| 124 |
-
topic_options=topic_str,
|
| 125 |
-
context_options=context_str,
|
| 126 |
-
query=query
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
messages = [{"role": "system", "content": "You are a helpful NLU classification assistant."}, {"role": "user", "content": prompt}]
|
| 130 |
-
response_str = call_llm(messages, temperature=0.1)
|
| 131 |
-
|
| 132 |
-
if settings and settings.get("debug_mode"):
|
| 133 |
-
print(f"\n--- NLU Specialist Full Response ---\n{response_str}\n----------------------------------\n")
|
| 134 |
-
|
| 135 |
-
# --- STEP 4: Parse the final result ---
|
| 136 |
-
result_dict = {"detected_behaviors": [], "detected_emotion": "None", "detected_topic": "None", "detected_contexts": []}
|
| 137 |
-
try:
|
| 138 |
-
start_brace = response_str.find('{')
|
| 139 |
-
end_brace = response_str.rfind('}')
|
| 140 |
-
if start_brace != -1 and end_brace > start_brace:
|
| 141 |
-
json_str = response_str[start_brace : end_brace + 1]
|
| 142 |
-
result = json.loads(json_str)
|
| 143 |
-
|
| 144 |
-
behaviors = result.get("detected_behaviors")
|
| 145 |
-
if behaviors: # This checks for both None and empty list
|
| 146 |
-
result_dict["detected_behaviors"] = [b for b in behaviors if b in behavior_options]
|
| 147 |
-
|
| 148 |
-
# Fix bug to properly handle null values from the LLM and will no longer raise the TypeError.
|
| 149 |
-
# Use `or` to safely handle None, empty strings, etc.
|
| 150 |
-
result_dict["detected_emotion"] = result.get("detected_emotion") or "None"
|
| 151 |
-
result_dict["detected_topic"] = result.get("detected_topic") or "None"
|
| 152 |
-
|
| 153 |
-
contexts = result.get("detected_contexts")
|
| 154 |
-
if contexts: # This checks for both None and empty list
|
| 155 |
-
result_dict["detected_contexts"] = [c for c in contexts if c in context_options]
|
| 156 |
-
|
| 157 |
-
# Buggy code that can't handle a NULL case from LLM.
|
| 158 |
-
# result_dict["detected_behaviors"] = [b for b in result.get("detected_behaviors", []) if b in behavior_options]
|
| 159 |
-
# result_dict["detected_emotion"] = result.get("detected_emotion", "None")
|
| 160 |
-
# result_dict["detected_topic"] = result.get("detected_topic", "None")
|
| 161 |
-
# result_dict["detected_contexts"] = [c for c in result.get("detected_contexts", []) if c in context_options]
|
| 162 |
-
|
| 163 |
-
return result_dict
|
| 164 |
-
except (json.JSONDecodeError, AttributeError) as e:
|
| 165 |
-
print(f"ERROR parsing NLU Specialist JSON: {e}")
|
| 166 |
-
return result_dict
|
| 167 |
-
|
| 168 |
-
# -----------------------------
|
| 169 |
-
# Embeddings & VectorStore
|
| 170 |
-
# -----------------------------
|
| 171 |
-
|
| 172 |
-
def _default_embeddings():
|
| 173 |
-
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 174 |
-
return HuggingFaceEmbeddings(model_name=model_name)
|
| 175 |
-
|
| 176 |
-
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
|
| 177 |
-
os.makedirs(os.path.dirname(index_path), exist_ok=True)
|
| 178 |
-
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
|
| 179 |
-
try:
|
| 180 |
-
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
|
| 181 |
-
except Exception: pass
|
| 182 |
-
if is_personal and not docs:
|
| 183 |
-
docs = [Document(page_content="(This is the start of the personal memory journal.)", metadata={"source": "placeholder"})]
|
| 184 |
-
vs = FAISS.from_documents(docs, _default_embeddings())
|
| 185 |
-
vs.save_local(index_path)
|
| 186 |
-
return vs
|
| 187 |
-
|
| 188 |
-
def texts_from_jsonl(path: str) -> List[Document]:
|
| 189 |
-
out: List[Document] = []
|
| 190 |
-
try:
|
| 191 |
-
with open(path, "r", encoding="utf-8") as f:
|
| 192 |
-
for i, line in enumerate(f):
|
| 193 |
-
obj = json.loads(line.strip())
|
| 194 |
-
txt = obj.get("text") or ""
|
| 195 |
-
if not txt.strip(): continue
|
| 196 |
-
md = {"source": os.path.basename(path), "chunk": i}
|
| 197 |
-
for k in ("behaviors", "emotion", "topic_tags", "context_tags"):
|
| 198 |
-
if k in obj and obj[k]: md[k] = obj[k]
|
| 199 |
-
out.append(Document(page_content=txt, metadata=md))
|
| 200 |
-
except Exception: return []
|
| 201 |
-
return out
|
| 202 |
-
|
| 203 |
-
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
|
| 204 |
-
docs: List[Document] = []
|
| 205 |
-
for p in (sample_paths or []):
|
| 206 |
-
try:
|
| 207 |
-
if p.lower().endswith(".jsonl"):
|
| 208 |
-
docs.extend(texts_from_jsonl(p))
|
| 209 |
-
else:
|
| 210 |
-
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
|
| 211 |
-
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
|
| 212 |
-
except Exception: continue
|
| 213 |
-
if not docs:
|
| 214 |
-
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
|
| 215 |
-
return build_or_load_vectorstore(docs, index_path=index_path)
|
| 216 |
-
|
| 217 |
-
# -----------------------------
|
| 218 |
-
# LLM Call
|
| 219 |
-
# -----------------------------
|
| 220 |
-
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None) -> str:
|
| 221 |
-
client = _openai_client()
|
| 222 |
-
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
| 223 |
-
if not client:
|
| 224 |
-
return "(Offline Mode: OpenAI API key not configured.)"
|
| 225 |
-
try:
|
| 226 |
-
api_args = {"model": model, "messages": messages, "temperature": float(temperature if temperature is not None else 0.6)}
|
| 227 |
-
if stop: api_args["stop"] = stop
|
| 228 |
-
resp = client.chat.completions.create(**api_args)
|
| 229 |
-
return (resp.choices[0].message.content or "").strip()
|
| 230 |
-
except Exception as e:
|
| 231 |
-
return f"[LLM API Error: {e}]"
|
| 232 |
-
|
| 233 |
-
# -----------------------------
|
| 234 |
-
# Prompting & RAG Chain
|
| 235 |
-
# -----------------------------
|
| 236 |
-
def make_rag_chain(
|
| 237 |
-
vs_general: FAISS,
|
| 238 |
-
vs_personal: FAISS,
|
| 239 |
-
*,
|
| 240 |
-
role: str = "patient",
|
| 241 |
-
temperature: float = 0.6,
|
| 242 |
-
language: str = "English",
|
| 243 |
-
patient_name: str = "the patient",
|
| 244 |
-
caregiver_name: str = "the caregiver",
|
| 245 |
-
tone: str = "warm",
|
| 246 |
-
):
|
| 247 |
-
"""Returns a callable that performs the complete, intelligent RAG process."""
|
| 248 |
-
|
| 249 |
-
def _format_docs(docs: List[Document], default_msg: str) -> str:
|
| 250 |
-
if not docs: return default_msg
|
| 251 |
-
unique_docs = {doc.page_content: doc for doc in docs}.values()
|
| 252 |
-
return "\n".join([f"- {d.page_content.strip()}" for d in unique_docs])
|
| 253 |
-
|
| 254 |
-
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None, topic_tag: Optional[str] = None, context_tags: Optional[List[str]] = None) -> Dict[str, Any]:
|
| 255 |
-
|
| 256 |
-
router_messages = [{"role": "user", "content": ROUTER_PROMPT.format(query=query)}]
|
| 257 |
-
query_type = call_llm(router_messages, temperature=0.0).strip().lower()
|
| 258 |
-
print(f"Query classified as: {query_type}")
|
| 259 |
-
|
| 260 |
-
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, patient_name=patient_name or "the patient", caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS)
|
| 261 |
-
messages = [{"role": "system", "content": system_message}]
|
| 262 |
-
messages.extend(chat_history)
|
| 263 |
-
|
| 264 |
-
if "general_knowledge_question" in query_type:
|
| 265 |
-
user_prompt = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE.format(question=query, language=language)
|
| 266 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 267 |
-
answer = call_llm(messages, temperature=temperature)
|
| 268 |
-
return {"answer": answer, "sources": ["General Knowledge"]}
|
| 269 |
-
|
| 270 |
-
elif "factual_question" in query_type:
|
| 271 |
-
print(f"Performing query expansion for: '{query}'")
|
| 272 |
-
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
|
| 273 |
-
expansion_response = call_llm([{"role": "user", "content": expansion_prompt}], temperature=0.1)
|
| 274 |
-
try:
|
| 275 |
-
clean_response = expansion_response.strip().replace("```json", "").replace("```", "")
|
| 276 |
-
expanded_queries = json.loads(clean_response)
|
| 277 |
-
search_queries = [query] + expanded_queries
|
| 278 |
-
except json.JSONDecodeError:
|
| 279 |
-
search_queries = [query]
|
| 280 |
-
print(f"Searching with queries: {search_queries}")
|
| 281 |
-
all_docs = []
|
| 282 |
-
for q in search_queries:
|
| 283 |
-
all_docs.extend(vs_personal.similarity_search(q, k=2))
|
| 284 |
-
all_docs.extend(vs_general.similarity_search(q, k=2))
|
| 285 |
-
context = _format_docs(all_docs, "(No relevant information found in the memory journal.)")
|
| 286 |
-
user_prompt = ANSWER_TEMPLATE_FACTUAL.format(context=context, question=query, language=language)
|
| 287 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 288 |
-
answer = call_llm(messages, temperature=temperature)
|
| 289 |
-
sources = list(set(d.metadata.get("source", "unknown") for d in all_docs))
|
| 290 |
-
return {"answer": answer, "sources": sources}
|
| 291 |
-
|
| 292 |
-
elif "general_conversation" in query_type:
|
| 293 |
-
user_prompt = ANSWER_TEMPLATE_GENERAL.format(question=query, language=language)
|
| 294 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 295 |
-
answer = call_llm(messages, temperature=temperature)
|
| 296 |
-
return {"answer": answer, "sources": []}
|
| 297 |
-
|
| 298 |
-
else: # Default to the original caregiving logic
|
| 299 |
-
# --- Reworked search strategy to handle filters correctly ---
|
| 300 |
-
|
| 301 |
-
# 1. Start with a general, unfiltered search to always get text-based matches.
|
| 302 |
-
personal_docs = vs_personal.similarity_search(query, k=3)
|
| 303 |
-
general_docs = vs_general.similarity_search(query, k=3)
|
| 304 |
-
|
| 305 |
-
# 2. Build a filter for simple equality checks (FAISS supported).
|
| 306 |
-
simple_search_filter = {}
|
| 307 |
-
if scenario_tag and scenario_tag != "None":
|
| 308 |
-
simple_search_filter["behaviors"] = scenario_tag.lower()
|
| 309 |
-
if emotion_tag and emotion_tag != "None":
|
| 310 |
-
simple_search_filter["emotion"] = emotion_tag.lower()
|
| 311 |
-
if topic_tag and topic_tag != "None":
|
| 312 |
-
simple_search_filter["topic_tags"] = topic_tag.lower()
|
| 313 |
-
|
| 314 |
-
# 3. If simple filters exist, perform a second, more specific search.
|
| 315 |
-
if simple_search_filter:
|
| 316 |
-
print(f"Performing additional search with filter: {simple_search_filter}")
|
| 317 |
-
personal_docs.extend(vs_personal.similarity_search(query, k=2, filter=simple_search_filter))
|
| 318 |
-
general_docs.extend(vs_general.similarity_search(query, k=2, filter=simple_search_filter))
|
| 319 |
-
|
| 320 |
-
# 4. If context_tags exist (unsupported by 'in'), loop through them and perform separate searches.
|
| 321 |
-
if context_tags:
|
| 322 |
-
print(f"Performing looped context tag search for: {context_tags}")
|
| 323 |
-
for tag in context_tags:
|
| 324 |
-
context_filter = {"context_tags": tag.lower()}
|
| 325 |
-
personal_docs.extend(vs_personal.similarity_search(query, k=1, filter=context_filter))
|
| 326 |
-
general_docs.extend(vs_general.similarity_search(query, k=1, filter=context_filter))
|
| 327 |
-
|
| 328 |
-
# 5. Combine and de-duplicate all results.
|
| 329 |
-
all_docs_care = list({doc.page_content: doc for doc in personal_docs + general_docs}.values())
|
| 330 |
-
|
| 331 |
-
# --- End of reworked search strategy ---
|
| 332 |
-
|
| 333 |
-
personal_context = _format_docs([d for d in all_docs_care if d in personal_docs], "(No relevant personal memories found.)")
|
| 334 |
-
general_context = _format_docs([d for d in all_docs_care if d in general_docs], "(No general guidance found.)")
|
| 335 |
-
|
| 336 |
-
first_emotion = None
|
| 337 |
-
for doc in all_docs_care:
|
| 338 |
-
if "emotion" in doc.metadata and doc.metadata["emotion"]:
|
| 339 |
-
emotion_data = doc.metadata["emotion"]
|
| 340 |
-
if isinstance(emotion_data, list): first_emotion = emotion_data[0]
|
| 341 |
-
else: first_emotion = emotion_data
|
| 342 |
-
if first_emotion: break
|
| 343 |
-
|
| 344 |
-
emotions_context = render_emotion_guidelines(first_emotion or emotion_tag)
|
| 345 |
-
is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None)
|
| 346 |
-
template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM
|
| 347 |
-
|
| 348 |
-
if template == ANSWER_TEMPLATE_ADQ:
|
| 349 |
-
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=scenario_tag, emotions_context=emotions_context, role=role, language=language)
|
| 350 |
-
else:
|
| 351 |
-
combined_context = f"General Guidance:\n{general_context}\n\nPersonal Memories:\n{personal_context}"
|
| 352 |
-
user_prompt = template.format(context=combined_context, question=query, language=language)
|
| 353 |
-
|
| 354 |
-
messages.append({"role": "user", "content": user_prompt})
|
| 355 |
-
answer = call_llm(messages, temperature=temperature)
|
| 356 |
-
|
| 357 |
-
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
|
| 358 |
-
if scenario_tag and scenario_tag.lower() in high_risk_scenarios:
|
| 359 |
-
answer += f"\n\n---\n{RISK_FOOTER}"
|
| 360 |
-
|
| 361 |
-
sources = list(set(d.metadata.get("source", "unknown") for d in all_docs_care))
|
| 362 |
-
return {"answer": answer, "sources": sources}
|
| 363 |
-
|
| 364 |
-
return _answer_fn
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
|
| 368 |
-
if not callable(chain): return {"answer": "[Error: RAG chain is not callable]", "sources": []}
|
| 369 |
-
try:
|
| 370 |
-
return chain(question, **kwargs)
|
| 371 |
-
except Exception as e:
|
| 372 |
-
print(f"ERROR in answer_query: {e}")
|
| 373 |
-
return {"answer": f"[Error executing chain: {e}]", "sources": []}
|
| 374 |
-
|
| 375 |
-
# -----------------------------
|
| 376 |
-
# TTS & Transcription
|
| 377 |
-
# -----------------------------
|
| 378 |
-
def synthesize_tts(text: str, lang: str = "en"):
|
| 379 |
-
if not text or gTTS is None: return None
|
| 380 |
-
try:
|
| 381 |
-
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp:
|
| 382 |
-
tts = gTTS(text=text, lang=(lang or "en"))
|
| 383 |
-
tts.save(fp.name)
|
| 384 |
-
return fp.name
|
| 385 |
-
except Exception:
|
| 386 |
-
return None
|
| 387 |
-
|
| 388 |
-
def transcribe_audio(filepath: str, lang: str = "en"):
|
| 389 |
-
client = _openai_client()
|
| 390 |
-
if not client: return "[Transcription failed: API key not configured]"
|
| 391 |
-
api_args = {"model": "whisper-1"}
|
| 392 |
-
if lang and lang != "auto": api_args["language"] = lang
|
| 393 |
-
with open(filepath, "rb") as audio_file:
|
| 394 |
-
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
|
| 395 |
-
return transcription.text
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|