# evaluate.py import os import json import time import pandas as pd from typing import List, Dict, Any # --- Imports from the main application --- try: from alz_companion.agent import ( make_rag_chain, route_query_type, detect_tags_from_query, answer_query, call_llm ) from alz_companion.prompts import FAITHFULNESS_JUDGE_PROMPT from langchain_community.vectorstores import FAISS except ImportError: class FAISS: pass def make_rag_chain(*args, **kwargs): return lambda q, **k: {"answer": f"(Eval Fallback) You asked: {q}", "sources": []} def route_query_type(q): return "general_conversation" def detect_tags_from_query(*args, **kwargs): return {} def answer_query(chain, q, **kwargs): return chain(q, **kwargs) def call_llm(*args, **kwargs): return "{}" FAITHFULNESS_JUDGE_PROMPT = "" print("WARNING: Could not import from alz_companion. Evaluation functions will use fallbacks.") # --- LLM-as-a-Judge Prompt for Answer Correctness --- ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess the factual correctness of a generated answer against a ground truth answer. - GROUND_TRUTH_ANSWER: This is the gold-standard, correct answer. - GENERATED_ANSWER: This is the answer produced by the AI model. Evaluate if the GENERATED_ANSWER is factually aligned with the GROUND_TRUTH_ANSWER. Ignore minor differences in phrasing, tone, or structure. The key is factual accuracy. Respond with a single JSON object containing a float score from 0.0 to 1.0. - 1.0: The generated answer is factually correct and aligns perfectly with the ground truth. - 0.5: The generated answer is partially correct but misses key information or contains minor inaccuracies. - 0.0: The generated answer is factually incorrect or contradicts the ground truth. --- DATA TO EVALUATE --- GROUND_TRUTH_ANSWER: {ground_truth_answer} GENERATED_ANSWER: {generated_answer} --- Return a single JSON object with your score: {{ "correctness_score": }} """ test_fixtures = [] def load_test_fixtures(): """Loads fixtures into the test_fixtures list.""" global test_fixtures test_fixtures = [] env_path = os.environ.get("TEST_FIXTURES_PATH", "").strip() candidates = [env_path] if env_path else ["conversation_test_fixtures_v8.jsonl", "conversation_test_fixtures_v5.jsonl"] path = next((p for p in candidates if p and os.path.exists(p)), None) if not path: print("Warning: No test fixtures file found for evaluation.") return # Use the corrected v8 file if available if "conversation_test_fixtures_v8.jsonl" in path: print(f"Using corrected test fixtures: {path}") with open(path, "r", encoding="utf-8") as f: for line in f: try: test_fixtures.append(json.loads(line)) except json.JSONDecodeError: print(f"Skipping malformed JSON line in {path}") print(f"Loaded {len(test_fixtures)} fixtures for evaluation from {path}") def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]: lookup_key = expected_key_override or tag_key expected_raw = expected.get(lookup_key, []) expected_set = set(expected_raw if isinstance(expected_raw, list) else [expected_raw]) if expected_raw and expected_raw != "None" else set() actual_raw = actual.get(tag_key, []) actual_set = set(actual_raw if isinstance(actual_raw, list) else [actual_raw]) if actual_raw and actual_raw != "None" else set() if not expected_set and not actual_set: return {"precision": 1.0, "recall": 1.0, "f1_score": 1.0} true_positives = len(expected_set.intersection(actual_set)) precision = true_positives / len(actual_set) if actual_set else 0.0 recall = true_positives / len(expected_set) if expected_set else 0.0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0 return {"precision": precision, "recall": recall, "f1_score": f1_score} def _parse_judge_json(raw_str: str) -> dict | None: try: start_brace = raw_str.find('{') end_brace = raw_str.rfind('}') if start_brace != -1 and end_brace > start_brace: json_str = raw_str[start_brace : end_brace + 1] return json.loads(json_str) return None except (json.JSONDecodeError, AttributeError): return None def run_comprehensive_evaluation( vs_general: FAISS, vs_personal: FAISS, nlu_vectorstore: FAISS, config: Dict[str, Any] ): global test_fixtures if not test_fixtures: return "No test fixtures loaded. Please ensure conversation_test_fixtures_v8.jsonl exists.", [], [] def _norm(label: str) -> str: label = (label or "").strip().lower() return "factual_question" if "factual" in label else label print("Starting comprehensive evaluation...") results: List[Dict[str, Any]] = [] # ADD THESE LINES: total_fixtures = len(test_fixtures) print(f"\nšŸš€ STARTING EVALUATION on {total_fixtures} test cases...") # In evaluate.py, before the evaluation loop print("--- DEBUG: Checking personal vector store before evaluation ---") if vs_personal and hasattr(vs_personal.docstore, '_dict'): print(f"Personal vector store contains {len(vs_personal.docstore._dict)} documents.") else: print("Personal vector store appears to be empty or invalid.") # REPLACE the original for loop with this one to get the counter 'i' for i, fx in enumerate(test_fixtures): # for fx in test_fixtures: test_id = fx.get("test_id", "N/A") # This print statement now works because we have 'i' print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---") turns = fx.get("turns") or [] api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns] query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "") if not query: continue ground_truth = fx.get("ground_truth", {}) expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario")) expected_tags = ground_truth.get("expected_tags", {}) actual_route = _norm(route_query_type(query)) route_correct = (actual_route == expected_route) actual_tags: Dict[str, Any] = {} if "caregiving_scenario" in actual_route: actual_tags = detect_tags_from_query( query, nlu_vectorstore=nlu_vectorstore, behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"], topic_options=config["topic_tags"], context_options=config["context_tags"], ) behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors") emotion_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion") topic_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics") context_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts") final_tags = {} if "caregiving_scenario" in actual_route: final_tags = { "scenario_tag": (actual_tags.get("detected_behaviors") or [None])[0], "emotion_tag": actual_tags.get("detected_emotion"), "topic_tag": (actual_tags.get("detected_topics") or [None])[0], "context_tags": actual_tags.get("detected_contexts", []) } current_test_role = fx.get("test_role", "patient") rag_chain = make_rag_chain(vs_general, vs_personal, role=current_test_role) t0 = time.time() response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags) latency_ms = round((time.time() - t0) * 1000.0, 1) answer_text = response.get("answer", "ERROR") expected_sources_set = set(map(str, ground_truth.get("expected_sources", []))) raw_sources = response.get("sources", []) actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources])) # --- START: ADD THIS STRATEGIC PRINT BLOCK --- print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20) print(f" - Expected: {sorted(list(expected_sources_set))}") print(f" - Actual: {sorted(list(actual_sources_set))}") true_positives = expected_sources_set.intersection(actual_sources_set) false_positives = actual_sources_set - expected_sources_set false_negatives = expected_sources_set - actual_sources_set if not false_positives and not false_negatives: print(" - Result: āœ… Perfect Match!") else: if false_positives: print(f" - šŸ”» False Positives (hurts precision): {sorted(list(false_positives))}") if false_negatives: print(f" - šŸ”» False Negatives (hurts recall): {sorted(list(false_negatives))}") print("-"*59 + "\n") # --- END: ADD THIS STRATEGIC PRINT BLOCK --- context_precision, context_recall = 0.0, 0.0 if expected_sources_set or actual_sources_set: true_positives = len(expected_sources_set.intersection(actual_sources_set)) if len(actual_sources_set) > 0: context_precision = true_positives / len(actual_sources_set) if len(expected_sources_set) > 0: context_recall = true_positives / len(expected_sources_set) elif not expected_sources_set and not actual_sources_set: context_precision, context_recall = 1.0, 1.0 answer_correctness_score = None ground_truth_answer = ground_truth.get("ground_truth_answer") if ground_truth_answer and "ERROR" not in answer_text: try: judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text) raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0) correctness_data = _parse_judge_json(raw_correctness) if correctness_data and "correctness_score" in correctness_data: answer_correctness_score = float(correctness_data["correctness_score"]) except Exception as e: print(f"ERROR during answer correctness judging: {e}") faithfulness = None source_docs = response.get("source_documents", []) if source_docs and "ERROR" not in answer_text: context_blob = "\n---\n".join([doc.page_content for doc in source_docs]) judge_msg = FAITHFULNESS_JUDGE_PROMPT.format(query=query, answer=answer_text, sources=context_blob) try: if context_blob.strip(): raw = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0) data = _parse_judge_json(raw) if data: denom = data.get("supported", 0) + data.get("contradicted", 0) + data.get("not_enough_info", 0) if denom > 0: faithfulness = round(data.get("supported", 0) / denom, 3) elif data.get("ignored", 0) > 0: faithfulness = 1.0 except Exception as e: print(f"ERROR during faithfulness judging: {e}") sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else "" results.append({ "test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"), "route_correct": "āœ…" if route_correct else "āŒ", "expected_route": expected_route, "actual_route": actual_route, "behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}", "topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}", "generated_answer": answer_text, "sources": sources_pretty, "source_count": len(actual_sources_set), "latency_ms": latency_ms, "faithfulness": faithfulness, "context_precision": context_precision, "context_recall": context_recall, "answer_correctness": answer_correctness_score, }) df = pd.DataFrame(results) output_path = "evaluation_results.csv" if not df.empty: cols = [ "test_id", "title", "route_correct", "expected_route", "actual_route", "context_precision", "context_recall", "faithfulness", "answer_correctness", "behavior_f1", "emotion_f1", "topic_f1", "context_f1", "source_count", "latency_ms", "sources", "generated_answer" ] df = df[[c for c in cols if c in df.columns]] df.to_csv(output_path, index=False, encoding="utf-8") print(f"Evaluation results saved to {output_path}") pct = df["route_correct"].value_counts(normalize=True).get("āœ…", 0) * 100 to_f = lambda s: pd.to_numeric(s, errors="coerce") cp_mean = to_f(df["context_precision"]).mean() cr_mean = to_f(df["context_recall"]).mean() faith_mean = to_f(df["faithfulness"]).mean() correct_mean = to_f(df["answer_correctness"]).mean() rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0 summary_text = f""" ## Evaluation Summary - **Routing Accuracy**: {pct:.2f}% - **Behaviour F1 (avg)**: {(to_f(df["behavior_f1"]).mean() * 100):.2f}% - **Emotion F1 (avg)**: {(to_f(df["emotion_f1"]).mean() * 100):.2f}% - **Topic F1 (avg)**: {(to_f(df["topic_f1"]).mean() * 100):.2f}% - **Context F1 (avg)**: {(to_f(df["context_f1"]).mean() * 100):.2f}% - **RAG: Context Precision**: {"N/A" if pd.isna(cp_mean) else f'{(cp_mean * 100):.1f}%'} - **RAG: Context Recall**: {"N/A" if pd.isna(cr_mean) else f'{(cr_mean * 100):.1f}%'} - **RAG: Faithfulness (LLM-judge)**: {"N/A" if pd.isna(faith_mean) else f'{(faith_mean * 100):.1f}%'} - **RAG: Answer Correctness (LLM-judge)**: {"N/A" if pd.isna(correct_mean) else f'{(correct_mean * 100):.1f}%'} - **RAG Answers w/ Sources**: {rag_with_sources_pct:.1f}% - **RAG: Avg Latency (ms)**: {to_f(df["latency_ms"]).mean():.1f} """ df_display = df.rename(columns={ "context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall", "answer_correctness": "Answer Correct.", "faithfulness": "Faithfulness", "behavior_f1": "Behav. F1", "emotion_f1": "Emo. F1", "topic_f1": "Topic F1", "context_f1": "Ctx. F1" }) table_rows = df_display.values.tolist() headers = df_display.columns.tolist() else: summary_text = "No valid test fixtures found to evaluate." table_rows, headers = [], [] return summary_text, table_rows, headers