Keyurjotaniya007 commited on
Commit
d09befd
·
verified ·
1 Parent(s): bd98383

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +69 -52
  2. chatbot.py +20 -0
  3. requirements.txt +4 -1
app.py CHANGED
@@ -1,64 +1,81 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ import streamlit as st
2
+ from chatbot import (
3
+ get_googlegenai_client,
4
+ get_default_model,
5
+ load_chat_history,
6
+ save_chat_history
7
+ )
8
 
9
+ # Centered Title
10
+ st.markdown("""
11
+ <h1 style='text-align: center;'>Welcome, ChatGPT Clone</h1>
12
+ """, unsafe_allow_html=True)
13
 
14
+ client = get_googlegenai_client()
15
 
16
+ # Initialize session state
17
+ if "googlegenai_model" not in st.session_state:
18
+ st.session_state["googlegenai_model"] = get_default_model()
 
 
 
 
 
 
19
 
20
+ if "messages" not in st.session_state:
21
+ st.session_state.messages = load_chat_history()
 
 
 
22
 
23
+ # Sidebar: Clear history
24
+ with st.sidebar:
25
+ if st.button("Delete Chat History"):
26
+ st.session_state.messages = []
27
+ save_chat_history([])
28
 
29
+ # Show chat history
30
+ for msg in st.session_state.messages:
31
+ role = msg["role"]
32
+ content = msg["content"]
33
 
34
+ if role == "user":
35
+ st.markdown(f"""
36
+ <div style='text-align: right; background-color: #f0f0f5; padding: 10px 15px; border-radius: 20px; margin: 10px 0; display: inline-block; max-width: 80%; float: right; clear: both;'>
37
+ {content}
38
+ </div>
39
+ """, unsafe_allow_html=True)
40
+ else:
41
+ st.markdown(f"""
42
+ <div style='text-align: left; margin: 10px 0; max-width: 80%; float: left; clear: both;'>
43
+ {content}
44
+ </div>
45
+ """, unsafe_allow_html=True)
46
+ st.markdown("<div style='clear: both'></div>", unsafe_allow_html=True)
47
 
48
+ # Input field
49
+ if prompt := st.chat_input("Ask anything"):
50
+ # Append user message
51
+ st.session_state.messages.append({"role": "user", "content": prompt})
52
+ st.markdown(f"""
53
+ <div style='text-align: right; background-color: #f0f0f5; padding: 10px 15px; border-radius: 20px; margin: 10px 0; display: inline-block; max-width: 80%; float: right; clear: both;'>
54
+ {prompt}
55
+ </div>
56
+ """, unsafe_allow_html=True)
57
 
58
+ # Stream assistant response
59
+ full_response = ""
60
+ response_container = st.empty()
61
+ response = client.stream(st.session_state.messages)
62
 
63
+ for chunk in response:
64
+ full_response += chunk.content or ""
65
+ response_container.markdown(f"""
66
+ <div style='text-align: left; margin: 10px 0; max-width: 80%; float: left; clear: both;'>
67
+ {full_response + "▌"}
68
+ </div>
69
+ """, unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ # Final response (cleaned up)
72
+ response_container.markdown(f"""
73
+ <div style='text-align: left; margin: 10px 0; max-width: 80%; float: left; clear: both;'>
74
+ {full_response}
75
+ </div>
76
+ """, unsafe_allow_html=True)
77
+ st.markdown("<div style='clear: both'></div>", unsafe_allow_html=True)
78
 
79
+ # Save assistant response
80
+ st.session_state.messages.append({"role": "assistant", "content": full_response})
81
+ save_chat_history(st.session_state.messages)
chatbot.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shelve
3
+ from langchain_google_genai import ChatGoogleGenerativeAI
4
+
5
+ def get_default_model():
6
+ return "gemini-2.5-flash"
7
+
8
+ def get_googlegenai_client():
9
+ return ChatGoogleGenerativeAI(model=get_default_model(), streaming=True)
10
+
11
+ def get_storage_path():
12
+ return os.path.join("/tmp", "chat_history")
13
+
14
+ def load_chat_history():
15
+ with shelve.open(get_storage_path()) as db:
16
+ return db.get("messages", [])
17
+
18
+ def save_chat_history(messages):
19
+ with shelve.open(get_storage_path()) as db:
20
+ db["messages"] = messages
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ streamlit>=1.32.0
2
+ langchain>=0.1.16
3
+ langchain-google-genai>=1.0.0
4
+ google-generativeai>=0.5.4