File size: 6,679 Bytes
7f5ae3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import threading
import time
import warnings
from datetime import datetime, timezone

import huggingface_hub
from gradio_client import Client, handle_file

from trackio import utils
from trackio.histogram import Histogram
from trackio.media import TrackioMedia
from trackio.sqlite_storage import SQLiteStorage
from trackio.table import Table
from trackio.typehints import LogEntry, UploadEntry

BATCH_SEND_INTERVAL = 0.5


class Run:
    def __init__(
        self,
        url: str,
        project: str,
        client: Client | None,
        name: str | None = None,
        group: str | None = None,
        config: dict | None = None,
        space_id: str | None = None,
    ):
        self.url = url
        self.project = project
        self._client_lock = threading.Lock()
        self._client_thread = None
        self._client = client
        self._space_id = space_id
        self.name = name or utils.generate_readable_name(
            SQLiteStorage.get_runs(project), space_id
        )
        self.group = group
        self.config = utils.to_json_safe(config or {})

        if isinstance(self.config, dict):
            for key in self.config:
                if key.startswith("_"):
                    raise ValueError(
                        f"Config key '{key}' is reserved (keys starting with '_' are reserved for internal use)"
                    )

        self.config["_Username"] = self._get_username()
        self.config["_Created"] = datetime.now(timezone.utc).isoformat()
        self.config["_Group"] = self.group

        self._queued_logs: list[LogEntry] = []
        self._queued_uploads: list[UploadEntry] = []
        self._stop_flag = threading.Event()
        self._config_logged = False

        self._client_thread = threading.Thread(target=self._init_client_background)
        self._client_thread.daemon = True
        self._client_thread.start()

    def _get_username(self) -> str | None:
        """Get the current HuggingFace username if logged in, otherwise None."""
        try:
            who = huggingface_hub.whoami()
            return who["name"] if who else None
        except Exception:
            return None

    def _batch_sender(self):
        """Send batched logs every BATCH_SEND_INTERVAL."""
        while not self._stop_flag.is_set() or len(self._queued_logs) > 0:
            # If the stop flag has been set, then just quickly send all
            # the logs and exit.
            if not self._stop_flag.is_set():
                time.sleep(BATCH_SEND_INTERVAL)

            with self._client_lock:
                if self._client is None:
                    return
                if self._queued_logs:
                    logs_to_send = self._queued_logs.copy()
                    self._queued_logs.clear()
                    self._client.predict(
                        api_name="/bulk_log",
                        logs=logs_to_send,
                        hf_token=huggingface_hub.utils.get_token(),
                    )
                if self._queued_uploads:
                    uploads_to_send = self._queued_uploads.copy()
                    self._queued_uploads.clear()
                    self._client.predict(
                        api_name="/bulk_upload_media",
                        uploads=uploads_to_send,
                        hf_token=huggingface_hub.utils.get_token(),
                    )

    def _init_client_background(self):
        if self._client is None:
            fib = utils.fibo()
            for sleep_coefficient in fib:
                try:
                    client = Client(self.url, verbose=False)

                    with self._client_lock:
                        self._client = client
                    break
                except Exception:
                    pass
                if sleep_coefficient is not None:
                    time.sleep(0.1 * sleep_coefficient)

        self._batch_sender()

    def _process_media(self, metrics, step: int | None) -> dict:
        """
        Serialize media in metrics and upload to space if needed.
        """
        serializable_metrics = {}
        if not step:
            step = 0
        for key, value in metrics.items():
            if isinstance(value, TrackioMedia):
                value._save(self.project, self.name, step)
                serializable_metrics[key] = value._to_dict()
                if self._space_id:
                    # Upload local media when deploying to space
                    upload_entry: UploadEntry = {
                        "project": self.project,
                        "run": self.name,
                        "step": step,
                        "uploaded_file": handle_file(value._get_absolute_file_path()),
                    }
                    with self._client_lock:
                        self._queued_uploads.append(upload_entry)
            else:
                serializable_metrics[key] = value
        return serializable_metrics

    @staticmethod
    def _replace_tables(metrics):
        for k, v in metrics.items():
            if isinstance(v, (Table, Histogram)):
                metrics[k] = v._to_dict()

    def log(self, metrics: dict, step: int | None = None):
        renamed_keys = []
        new_metrics = {}

        for k, v in metrics.items():
            if k in utils.RESERVED_KEYS or k.startswith("__"):
                new_key = f"__{k}"
                renamed_keys.append(k)
                new_metrics[new_key] = v
            else:
                new_metrics[k] = v

        if renamed_keys:
            warnings.warn(f"Reserved keys renamed: {renamed_keys} → '__{{key}}'")

        metrics = new_metrics
        Run._replace_tables(metrics)

        metrics = self._process_media(metrics, step)
        metrics = utils.serialize_values(metrics)

        config_to_log = None
        if not self._config_logged and self.config:
            config_to_log = utils.to_json_safe(self.config)
            self._config_logged = True

        log_entry: LogEntry = {
            "project": self.project,
            "run": self.name,
            "metrics": metrics,
            "step": step,
            "config": config_to_log,
        }

        with self._client_lock:
            self._queued_logs.append(log_entry)

    def finish(self):
        """Cleanup when run is finished."""
        self._stop_flag.set()

        # Wait for the batch sender to finish before joining the client thread.
        time.sleep(2 * BATCH_SEND_INTERVAL)

        if self._client_thread is not None:
            print("* Run finished. Uploading logs to Trackio (please wait...)")
            self._client_thread.join()