Spaces:
Sleeping
Sleeping
Kousik Kumar Siddavaram
commited on
Commit
·
dcb23aa
1
Parent(s):
4730a0e
Updated face recognition python files
Browse files
app/Hackathon_setup/face_recognition.py
CHANGED
|
@@ -8,12 +8,17 @@ import os
|
|
| 8 |
import joblib
|
| 9 |
import torch.nn.functional as F
|
| 10 |
|
|
|
|
| 11 |
# Current_path stores absolute path of the file from where it runs.
|
| 12 |
current_path = os.path.dirname(os.path.abspath(__file__))
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
# -------------------------
|
| 15 |
# Load trained classifier and label encoder
|
| 16 |
# -------------------------
|
|
|
|
| 17 |
clf_path = os.path.join(current_path, "team_classifier.joblib")
|
| 18 |
le_path = os.path.join(current_path, "label_encoder.joblib")
|
| 19 |
clf = joblib.load(clf_path)
|
|
@@ -23,22 +28,29 @@ le = joblib.load(le_path)
|
|
| 23 |
# Face Detection
|
| 24 |
# -------------------------
|
| 25 |
def detected_face(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
eye_haar = current_path + '/haarcascade_eye.xml'
|
| 27 |
face_haar = current_path + '/haarcascade_frontalface_default.xml'
|
| 28 |
face_cascade = cv2.CascadeClassifier(face_haar)
|
| 29 |
-
|
| 30 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 31 |
-
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# -------------------------
|
| 44 |
# Compute Similarity
|
|
@@ -47,16 +59,19 @@ def get_similarity(img1, img2):
|
|
| 47 |
# Detect faces
|
| 48 |
det_img1 = detected_face(img1)
|
| 49 |
det_img2 = detected_face(img2)
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
|
|
|
| 52 |
det_img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY))
|
| 53 |
|
| 54 |
# Transform images
|
| 55 |
face1 = trnscm(det_img1).unsqueeze(0).to(device)
|
| 56 |
face2 = trnscm(det_img2).unsqueeze(0).to(device)
|
| 57 |
|
| 58 |
-
# Load Siamese model
|
| 59 |
-
model_path = current_path
|
| 60 |
checkpoint = torch.load(model_path, map_location=device)
|
| 61 |
feature_net = Siamese().to(device)
|
| 62 |
feature_net.load_state_dict(checkpoint['net_dict'])
|
|
@@ -76,22 +91,23 @@ def get_similarity(img1, img2):
|
|
| 76 |
def get_face_class(img1):
|
| 77 |
# Detect face
|
| 78 |
det_img1 = detected_face(img1)
|
|
|
|
| 79 |
if det_img1 == 0:
|
| 80 |
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
| 81 |
|
| 82 |
# Transform image
|
| 83 |
face = trnscm(det_img1).unsqueeze(0).to(device)
|
| 84 |
|
| 85 |
-
# Load Siamese model
|
| 86 |
-
model_path = current_path
|
| 87 |
checkpoint = torch.load(model_path, map_location=device)
|
| 88 |
feature_net = Siamese().to(device)
|
| 89 |
feature_net.load_state_dict(checkpoint['net_dict'])
|
| 90 |
feature_net.eval()
|
| 91 |
|
| 92 |
-
# Get embedding
|
| 93 |
with torch.no_grad():
|
| 94 |
-
embedding = feature_net.
|
| 95 |
embedding_np = embedding.cpu().numpy()
|
| 96 |
|
| 97 |
# Predict class using trained classifier
|
|
|
|
| 8 |
import joblib
|
| 9 |
import torch.nn.functional as F
|
| 10 |
|
| 11 |
+
|
| 12 |
# Current_path stores absolute path of the file from where it runs.
|
| 13 |
current_path = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
|
| 15 |
+
# Define the new model path constant for clarity
|
| 16 |
+
SIAMESE_MODEL_FILENAME = 'face_recognition_model.t7'
|
| 17 |
+
|
| 18 |
# -------------------------
|
| 19 |
# Load trained classifier and label encoder
|
| 20 |
# -------------------------
|
| 21 |
+
# NOTE: Ensure 'team_classifier.joblib' is retrained on 80,000 features!
|
| 22 |
clf_path = os.path.join(current_path, "team_classifier.joblib")
|
| 23 |
le_path = os.path.join(current_path, "label_encoder.joblib")
|
| 24 |
clf = joblib.load(clf_path)
|
|
|
|
| 28 |
# Face Detection
|
| 29 |
# -------------------------
|
| 30 |
def detected_face(image):
|
| 31 |
+
"""
|
| 32 |
+
Detects faces in the image and returns the largest detected face (PIL Image).
|
| 33 |
+
Returns 0 if no face is detected.
|
| 34 |
+
"""
|
| 35 |
eye_haar = current_path + '/haarcascade_eye.xml'
|
| 36 |
face_haar = current_path + '/haarcascade_frontalface_default.xml'
|
| 37 |
face_cascade = cv2.CascadeClassifier(face_haar)
|
| 38 |
+
|
| 39 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 40 |
+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
|
| 41 |
+
|
| 42 |
+
if len(faces) == 0:
|
| 43 |
+
return 0 # No face detected
|
| 44 |
+
|
| 45 |
+
# Select the face with the largest area
|
| 46 |
+
face_areas = [w * h for (x, y, w, h) in faces]
|
| 47 |
+
max_idx = np.argmax(face_areas)
|
| 48 |
+
x, y, w, h = faces[max_idx]
|
| 49 |
+
|
| 50 |
+
# Crop the largest face
|
| 51 |
+
face_cropped = gray[y:y + h, x:x + w]
|
| 52 |
+
return Image.fromarray(face_cropped)
|
| 53 |
+
|
| 54 |
|
| 55 |
# -------------------------
|
| 56 |
# Compute Similarity
|
|
|
|
| 59 |
# Detect faces
|
| 60 |
det_img1 = detected_face(img1)
|
| 61 |
det_img2 = detected_face(img2)
|
| 62 |
+
|
| 63 |
+
# Fallback to entire image if no face detected
|
| 64 |
+
if det_img1 == 0:
|
| 65 |
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
| 66 |
+
if det_img2 == 0:
|
| 67 |
det_img2 = Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY))
|
| 68 |
|
| 69 |
# Transform images
|
| 70 |
face1 = trnscm(det_img1).unsqueeze(0).to(device)
|
| 71 |
face2 = trnscm(det_img2).unsqueeze(0).to(device)
|
| 72 |
|
| 73 |
+
# Load Siamese model (Updated filename)
|
| 74 |
+
model_path = os.path.join(current_path, SIAMESE_MODEL_FILENAME)
|
| 75 |
checkpoint = torch.load(model_path, map_location=device)
|
| 76 |
feature_net = Siamese().to(device)
|
| 77 |
feature_net.load_state_dict(checkpoint['net_dict'])
|
|
|
|
| 91 |
def get_face_class(img1):
|
| 92 |
# Detect face
|
| 93 |
det_img1 = detected_face(img1)
|
| 94 |
+
|
| 95 |
if det_img1 == 0:
|
| 96 |
det_img1 = Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
|
| 97 |
|
| 98 |
# Transform image
|
| 99 |
face = trnscm(det_img1).unsqueeze(0).to(device)
|
| 100 |
|
| 101 |
+
# Load Siamese model (Updated filename)
|
| 102 |
+
model_path = os.path.join(current_path, SIAMESE_MODEL_FILENAME)
|
| 103 |
checkpoint = torch.load(model_path, map_location=device)
|
| 104 |
feature_net = Siamese().to(device)
|
| 105 |
feature_net.load_state_dict(checkpoint['net_dict'])
|
| 106 |
feature_net.eval()
|
| 107 |
|
| 108 |
+
# Get embedding (CRITICAL FIX: Use extract_features for classification)
|
| 109 |
with torch.no_grad():
|
| 110 |
+
embedding = feature_net.extract_features(face) # <--- FIX APPLIED HERE
|
| 111 |
embedding_np = embedding.cpu().numpy()
|
| 112 |
|
| 113 |
# Predict class using trained classifier
|
app/Hackathon_setup/face_recognition_model.py
CHANGED
|
@@ -5,16 +5,20 @@ import torch.nn as nn
|
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torchvision import transforms
|
| 7 |
|
|
|
|
| 8 |
# ---------------------------
|
| 9 |
# Device configuration
|
| 10 |
# ---------------------------
|
|
|
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
| 13 |
# ---------------------------
|
| 14 |
# Transformation Function
|
| 15 |
# ---------------------------
|
| 16 |
-
#
|
| 17 |
trnscm = transforms.Compose([
|
|
|
|
|
|
|
| 18 |
transforms.Resize((100, 100)),
|
| 19 |
transforms.ToTensor()
|
| 20 |
])
|
|
@@ -26,7 +30,7 @@ class Siamese(nn.Module):
|
|
| 26 |
def __init__(self):
|
| 27 |
super(Siamese, self).__init__()
|
| 28 |
|
| 29 |
-
# CNN layers (
|
| 30 |
self.cnn1 = nn.Sequential(
|
| 31 |
nn.ReflectionPad2d(1),
|
| 32 |
nn.Conv2d(1, 4, kernel_size=3),
|
|
@@ -44,35 +48,44 @@ class Siamese(nn.Module):
|
|
| 44 |
nn.BatchNorm2d(8)
|
| 45 |
)
|
| 46 |
|
| 47 |
-
# Fully connected layers
|
|
|
|
| 48 |
self.fc1 = nn.Sequential(
|
| 49 |
nn.Linear(8 * 100 * 100, 500),
|
| 50 |
nn.ReLU(inplace=True),
|
| 51 |
nn.Linear(500, 500),
|
| 52 |
nn.ReLU(inplace=True),
|
| 53 |
-
nn.Linear(500, 5)
|
| 54 |
)
|
| 55 |
|
|
|
|
| 56 |
def forward_once(self, x):
|
| 57 |
-
# Forward pass for one image
|
| 58 |
output = self.cnn1(x)
|
| 59 |
output = output.view(output.size(0), -1)
|
| 60 |
output = self.fc1(output)
|
| 61 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def forward(self, x1, x2):
|
| 64 |
-
# Forward pass for
|
| 65 |
output1 = self.forward_once(x1)
|
| 66 |
output2 = self.forward_once(x2)
|
| 67 |
return output1, output2
|
| 68 |
|
| 69 |
##########################################################################################################
|
| 70 |
-
##
|
| 71 |
-
## Not used for face similarity; now we use a Sklearn classifier separately
|
| 72 |
##########################################################################################################
|
| 73 |
-
classifier = None
|
| 74 |
|
| 75 |
-
# ---------------------------
|
| 76 |
# Class labels (optional, for reference)
|
| 77 |
-
# ---------------------------
|
| 78 |
classes = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6', 'person7']
|
|
|
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from torchvision import transforms
|
| 7 |
|
| 8 |
+
|
| 9 |
# ---------------------------
|
| 10 |
# Device configuration
|
| 11 |
# ---------------------------
|
| 12 |
+
# Use GPU if available, otherwise fall back to CPU
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
|
| 15 |
# ---------------------------
|
| 16 |
# Transformation Function
|
| 17 |
# ---------------------------
|
| 18 |
+
# This pipeline must match the transforms used during Siamese training.
|
| 19 |
trnscm = transforms.Compose([
|
| 20 |
+
# Crucial: Ensures 1-channel input for the CNN backbone
|
| 21 |
+
transforms.Grayscale(num_output_channels=1),
|
| 22 |
transforms.Resize((100, 100)),
|
| 23 |
transforms.ToTensor()
|
| 24 |
])
|
|
|
|
| 30 |
def __init__(self):
|
| 31 |
super(Siamese, self).__init__()
|
| 32 |
|
| 33 |
+
# CNN layers (Feature Extractor)
|
| 34 |
self.cnn1 = nn.Sequential(
|
| 35 |
nn.ReflectionPad2d(1),
|
| 36 |
nn.Conv2d(1, 4, kernel_size=3),
|
|
|
|
| 48 |
nn.BatchNorm2d(8)
|
| 49 |
)
|
| 50 |
|
| 51 |
+
# Fully connected layers (Metric Head for Siamese Loss)
|
| 52 |
+
# Output size is 8 * 100 * 100 = 80,000 features before first Linear layer
|
| 53 |
self.fc1 = nn.Sequential(
|
| 54 |
nn.Linear(8 * 100 * 100, 500),
|
| 55 |
nn.ReLU(inplace=True),
|
| 56 |
nn.Linear(500, 500),
|
| 57 |
nn.ReLU(inplace=True),
|
| 58 |
+
nn.Linear(500, 5) # Final 5-dimensional embedding
|
| 59 |
)
|
| 60 |
|
| 61 |
+
# Method to return the final low-dimensional embedding (used for similarity)
|
| 62 |
def forward_once(self, x):
|
|
|
|
| 63 |
output = self.cnn1(x)
|
| 64 |
output = output.view(output.size(0), -1)
|
| 65 |
output = self.fc1(output)
|
| 66 |
return output
|
| 67 |
+
|
| 68 |
+
# Method to return the high-dimensional features (used for classification)
|
| 69 |
+
def extract_features(self, x):
|
| 70 |
+
"""
|
| 71 |
+
Returns the raw, high-dimensional features (80,000) from the CNN backbone.
|
| 72 |
+
This output is what the Gradient Boosting Classifier (team_classifier.joblib) expects.
|
| 73 |
+
"""
|
| 74 |
+
output = self.cnn1(x)
|
| 75 |
+
# Flatten the output: 8 channels * 100 height * 100 width = 80,000 features
|
| 76 |
+
output = output.view(output.size(0), -1)
|
| 77 |
+
return output
|
| 78 |
|
| 79 |
def forward(self, x1, x2):
|
| 80 |
+
# Forward pass for similarity comparison
|
| 81 |
output1 = self.forward_once(x1)
|
| 82 |
output2 = self.forward_once(x2)
|
| 83 |
return output1, output2
|
| 84 |
|
| 85 |
##########################################################################################################
|
| 86 |
+
## Utility Variables
|
|
|
|
| 87 |
##########################################################################################################
|
| 88 |
+
classifier = None # Placeholder. The actual classifier is loaded via joblib in face_recognition.py
|
| 89 |
|
|
|
|
| 90 |
# Class labels (optional, for reference)
|
|
|
|
| 91 |
classes = ['person1', 'person2', 'person3', 'person4', 'person5', 'person6', 'person7']
|