Spaces:
Sleeping
Sleeping
Upload 3 files
Browse filesPorted to temp HF space
- App.py +1065 -0
- README.md +71 -13
- requirements.txt +4 -0
App.py
ADDED
|
@@ -0,0 +1,1065 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import asyncio
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import logging
|
| 5 |
+
from huggingface_hub import InferenceClient
|
| 6 |
+
import cohere
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
from anthropic import Anthropic
|
| 9 |
+
import openai
|
| 10 |
+
from typing import List, Dict, Any, Optional
|
| 11 |
+
|
| 12 |
+
# Configure logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
# --- Agent Class ---
|
| 17 |
+
class PolyThinkAgent:
|
| 18 |
+
def __init__(self, model_name: str, model_path: str, role: str = "solver", api_provider: str = None):
|
| 19 |
+
self.model_name = model_name
|
| 20 |
+
self.model_path = model_path
|
| 21 |
+
self.role = role
|
| 22 |
+
self.api_provider = api_provider
|
| 23 |
+
self.clients = {}
|
| 24 |
+
self.hf_token = None
|
| 25 |
+
self.inference = None
|
| 26 |
+
|
| 27 |
+
def set_clients(self, clients: Dict[str, Any]):
|
| 28 |
+
"""Set the API clients for this agent"""
|
| 29 |
+
self.clients = clients
|
| 30 |
+
if "huggingface" in clients:
|
| 31 |
+
self.hf_token = clients["huggingface"]
|
| 32 |
+
if self.hf_token:
|
| 33 |
+
self.inference = InferenceClient(token=self.hf_token)
|
| 34 |
+
|
| 35 |
+
async def solve_problem(self, problem: str) -> Dict[str, Any]:
|
| 36 |
+
"""Generate a solution to the given problem"""
|
| 37 |
+
try:
|
| 38 |
+
if self.api_provider == "cohere" and "cohere" in self.clients:
|
| 39 |
+
response = self.clients["cohere"].chat(
|
| 40 |
+
model=self.model_path,
|
| 41 |
+
message=f"""
|
| 42 |
+
PROBLEM: {problem}
|
| 43 |
+
INSTRUCTIONS:
|
| 44 |
+
- Provide a clear, concise solution in one sentence.
|
| 45 |
+
- Include brief reasoning in one additional sentence.
|
| 46 |
+
- Do not repeat the solution or add extraneous text.
|
| 47 |
+
"""
|
| 48 |
+
)
|
| 49 |
+
solution = response.text.strip()
|
| 50 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 51 |
+
|
| 52 |
+
elif self.api_provider == "anthropic" and "anthropic" in self.clients:
|
| 53 |
+
response = self.clients["anthropic"].messages.create(
|
| 54 |
+
model=self.model_path,
|
| 55 |
+
messages=[{
|
| 56 |
+
"role": "user",
|
| 57 |
+
"content": f"""
|
| 58 |
+
PROBLEM: {problem}
|
| 59 |
+
INSTRUCTIONS:
|
| 60 |
+
- Provide a clear, concise solution in one sentence.
|
| 61 |
+
- Include brief reasoning in one additional sentence.
|
| 62 |
+
- Do not repeat the solution or add extraneous text.
|
| 63 |
+
"""
|
| 64 |
+
}]
|
| 65 |
+
)
|
| 66 |
+
solution = response.content[0].text.strip()
|
| 67 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 68 |
+
|
| 69 |
+
elif self.api_provider == "openai" and "openai" in self.clients:
|
| 70 |
+
response = self.clients["openai"].chat.completions.create(
|
| 71 |
+
model=self.model_path,
|
| 72 |
+
max_tokens=100,
|
| 73 |
+
messages=[{
|
| 74 |
+
"role": "user",
|
| 75 |
+
"content": f"""
|
| 76 |
+
PROBLEM: {problem}
|
| 77 |
+
INSTRUCTIONS:
|
| 78 |
+
- Provide a clear, concise solution in one sentence.
|
| 79 |
+
- Include brief reasoning in one additional sentence.
|
| 80 |
+
- Do not repeat the solution or add extraneous text.
|
| 81 |
+
- Keep the response under 100 characters.
|
| 82 |
+
"""
|
| 83 |
+
}]
|
| 84 |
+
)
|
| 85 |
+
solution = response.choices[0].message.content.strip()
|
| 86 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 87 |
+
|
| 88 |
+
elif self.api_provider == "huggingface" and self.inference:
|
| 89 |
+
prompt = f"""
|
| 90 |
+
PROBLEM: {problem}
|
| 91 |
+
INSTRUCTIONS:
|
| 92 |
+
- Provide a clear, concise solution in one sentence.
|
| 93 |
+
- Include brief reasoning in one additional sentence.
|
| 94 |
+
- Do not repeat the solution or add extraneous text.
|
| 95 |
+
- Keep the response under 100 characters.
|
| 96 |
+
SOLUTION AND REASONING:
|
| 97 |
+
"""
|
| 98 |
+
result = self.inference.text_generation(
|
| 99 |
+
prompt, model=self.model_path, max_new_tokens=5000, temperature=0.5
|
| 100 |
+
)
|
| 101 |
+
solution = result if isinstance(result, str) else result.generated_text
|
| 102 |
+
return {"solution": solution.strip(), "model_name": self.model_name}
|
| 103 |
+
|
| 104 |
+
elif self.api_provider == "gemini" and "gemini" in self.clients:
|
| 105 |
+
model = self.clients["gemini"].GenerativeModel(self.model_path)
|
| 106 |
+
try:
|
| 107 |
+
response = model.generate_content(
|
| 108 |
+
f"""
|
| 109 |
+
PROBLEM: {problem}
|
| 110 |
+
INSTRUCTIONS:
|
| 111 |
+
- Provide a clear, concise solution in one sentence.
|
| 112 |
+
- Include brief reasoning in one additional sentence.
|
| 113 |
+
- Do not repeat the solution or add extraneous text.
|
| 114 |
+
- Keep the response under 100 characters.
|
| 115 |
+
""",
|
| 116 |
+
generation_config=genai.types.GenerationConfig(
|
| 117 |
+
temperature=0.5,
|
| 118 |
+
)
|
| 119 |
+
)
|
| 120 |
+
# Check response validity and handle different response structures
|
| 121 |
+
try:
|
| 122 |
+
# First try to access text directly if available
|
| 123 |
+
if hasattr(response, 'text'):
|
| 124 |
+
solution = response.text.strip()
|
| 125 |
+
# Otherwise check for candidates
|
| 126 |
+
elif hasattr(response, 'candidates') and response.candidates:
|
| 127 |
+
# Make sure we have candidates and parts before accessing
|
| 128 |
+
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
|
| 129 |
+
solution = response.candidates[0].content.parts[0].text.strip()
|
| 130 |
+
else:
|
| 131 |
+
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
|
| 132 |
+
solution = "Error parsing API response; incomplete response structure."
|
| 133 |
+
else:
|
| 134 |
+
# Fallback for when candidates is empty
|
| 135 |
+
logger.warning(f"Gemini API returned no candidates: {response}")
|
| 136 |
+
solution = "No solution generated; API returned empty response."
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.error(f"Error extracting text from Gemini response: {e}, response: {response}")
|
| 139 |
+
solution = "Error parsing API response."
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logger.error(f"Gemini API call failed: {e}")
|
| 142 |
+
solution = f"API error: {str(e)}"
|
| 143 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 144 |
+
|
| 145 |
+
else:
|
| 146 |
+
return {"solution": f"Error: Missing API configuration for {self.api_provider}", "model_name": self.model_name}
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logger.error(f"Error in {self.model_name}: {str(e)}")
|
| 150 |
+
return {"solution": f"Error: {str(e)}", "model_name": self.model_name}
|
| 151 |
+
async def evaluate_solutions(self, problem: str, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 152 |
+
"""Evaluate solutions from solver agents"""
|
| 153 |
+
try:
|
| 154 |
+
prompt = f"""
|
| 155 |
+
PROBLEM: {problem}
|
| 156 |
+
SOLUTIONS:
|
| 157 |
+
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
|
| 158 |
+
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
|
| 159 |
+
INSTRUCTIONS:
|
| 160 |
+
- Extract the numerical final answer from each solution (e.g., 68 from '16 + 52 = 68').
|
| 161 |
+
- Extract the key reasoning steps from each solution.
|
| 162 |
+
- Apply strict evaluation criteria:
|
| 163 |
+
* Numerical answers must match EXACTLY (including units and precision).
|
| 164 |
+
* Key reasoning steps must align in approach and logic.
|
| 165 |
+
- Output exactly: 'AGREEMENT: YES' if BOTH the numerical answers AND reasoning align perfectly.
|
| 166 |
+
- Output 'AGREEMENT: NO' followed by a one-sentence explanation if either the answers or reasoning differ in ANY way.
|
| 167 |
+
- Be conservative in declaring agreement - when in doubt, declare disagreement.
|
| 168 |
+
- Do not add scoring, commentary, or extraneous text.
|
| 169 |
+
EVALUATION:
|
| 170 |
+
"""
|
| 171 |
+
|
| 172 |
+
if self.api_provider == "gemini" and "gemini" in self.clients:
|
| 173 |
+
# Instantiate the model for consistency and clarity
|
| 174 |
+
model = self.clients["gemini"].GenerativeModel(self.model_path)
|
| 175 |
+
# Use generate_content on the model instance
|
| 176 |
+
response = model.generate_content(
|
| 177 |
+
prompt,
|
| 178 |
+
generation_config=genai.types.GenerationConfig(
|
| 179 |
+
temperature=0.5,
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# Handle potential empty response or missing text attribute
|
| 184 |
+
try:
|
| 185 |
+
# First try to access text directly if available
|
| 186 |
+
if hasattr(response, 'text'):
|
| 187 |
+
judgment = response.text.strip()
|
| 188 |
+
# Otherwise check for candidates
|
| 189 |
+
elif hasattr(response, 'candidates') and response.candidates:
|
| 190 |
+
# Make sure we have candidates and parts before accessing
|
| 191 |
+
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
|
| 192 |
+
judgment = response.candidates[0].content.parts[0].text.strip()
|
| 193 |
+
else:
|
| 194 |
+
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
|
| 195 |
+
judgment = "AGREEMENT: NO - Unable to evaluate due to API response structure issue."
|
| 196 |
+
else:
|
| 197 |
+
# Fallback for when candidates is empty
|
| 198 |
+
logger.warning(f"Empty response from Gemini API: {response}")
|
| 199 |
+
judgment = "AGREEMENT: NO - Unable to evaluate due to API response issue."
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Error extracting text from Gemini response: {e}")
|
| 202 |
+
judgment = "AGREEMENT: NO - Unable to evaluate due to API response issue."
|
| 203 |
+
|
| 204 |
+
return {"judgment": judgment, "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
|
| 205 |
+
|
| 206 |
+
elif self.api_provider == "openai" and "openai" in self.clients:
|
| 207 |
+
response = self.clients["openai"].chat.completions.create(
|
| 208 |
+
model=self.model_path,
|
| 209 |
+
max_tokens=200,
|
| 210 |
+
messages=[{"role": "user", "content": prompt}]
|
| 211 |
+
)
|
| 212 |
+
judgment = response.choices[0].message.content.strip()
|
| 213 |
+
return {"judgment": judgment, "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
|
| 214 |
+
|
| 215 |
+
elif self.api_provider == "huggingface" and self.inference:
|
| 216 |
+
result = self.inference.text_generation(
|
| 217 |
+
prompt, model=self.model_path, max_new_tokens=200, temperature=0.5
|
| 218 |
+
)
|
| 219 |
+
judgment = result if isinstance(result, str) else result.generated_text
|
| 220 |
+
return {"judgment": judgment.strip(), "reprompt_needed": "AGREEMENT: NO" in judgment.upper()}
|
| 221 |
+
|
| 222 |
+
else:
|
| 223 |
+
return {"judgment": f"Error: Missing API configuration for {self.api_provider}", "reprompt_needed": False}
|
| 224 |
+
|
| 225 |
+
except Exception as e:
|
| 226 |
+
logger.error(f"Error in judge: {str(e)}")
|
| 227 |
+
return {"judgment": f"Error: {str(e)}", "reprompt_needed": False}
|
| 228 |
+
|
| 229 |
+
async def reprompt_with_context(self, problem: str, solutions: List[Dict[str, Any]], judgment: str) -> Dict[str, Any]:
|
| 230 |
+
"""Generate a revised solution based on previous solutions and judgment"""
|
| 231 |
+
try:
|
| 232 |
+
prompt = f"""
|
| 233 |
+
PROBLEM: {problem}
|
| 234 |
+
PREVIOUS SOLUTIONS:
|
| 235 |
+
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
|
| 236 |
+
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
|
| 237 |
+
JUDGE FEEDBACK: {judgment}
|
| 238 |
+
INSTRUCTIONS:
|
| 239 |
+
- Provide a revised, concise solution in one sentence.
|
| 240 |
+
- Include brief reasoning in one additional sentence.
|
| 241 |
+
- Address the judge's feedback.
|
| 242 |
+
"""
|
| 243 |
+
|
| 244 |
+
if self.api_provider == "cohere" and "cohere" in self.clients:
|
| 245 |
+
response = self.clients["cohere"].chat(
|
| 246 |
+
model=self.model_path,
|
| 247 |
+
message=prompt
|
| 248 |
+
)
|
| 249 |
+
solution = response.text.strip()
|
| 250 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 251 |
+
|
| 252 |
+
elif self.api_provider == "anthropic" and "anthropic" in self.clients:
|
| 253 |
+
response = self.clients["anthropic"].messages.create(
|
| 254 |
+
model=self.model_path,
|
| 255 |
+
max_tokens=100,
|
| 256 |
+
messages=[{"role": "user", "content": prompt}]
|
| 257 |
+
)
|
| 258 |
+
solution = response.content[0].text.strip()
|
| 259 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 260 |
+
|
| 261 |
+
elif self.api_provider == "openai" and "openai" in self.clients:
|
| 262 |
+
response = self.clients["openai"].chat.completions.create(
|
| 263 |
+
model=self.model_path,
|
| 264 |
+
max_tokens=100,
|
| 265 |
+
messages=[{"role": "user", "content": prompt}]
|
| 266 |
+
)
|
| 267 |
+
solution = response.choices[0].message.content.strip()
|
| 268 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 269 |
+
|
| 270 |
+
elif self.api_provider == "huggingface" and self.inference:
|
| 271 |
+
prompt += "\nREVISED SOLUTION AND REASONING:"
|
| 272 |
+
result = self.inference.text_generation(
|
| 273 |
+
prompt, model=self.model_path, max_new_tokens=500, temperature=0.5
|
| 274 |
+
)
|
| 275 |
+
solution = result if isinstance(result, str) else result.generated_text
|
| 276 |
+
return {"solution": solution.strip(), "model_name": self.model_name}
|
| 277 |
+
|
| 278 |
+
elif self.api_provider == "gemini" and "gemini" in self.clients:
|
| 279 |
+
# Instantiate the model for consistency and clarity
|
| 280 |
+
model = self.clients["gemini"].GenerativeModel(self.model_path)
|
| 281 |
+
# Use generate_content
|
| 282 |
+
response = model.generate_content(
|
| 283 |
+
f"""
|
| 284 |
+
PROBLEM: {problem}
|
| 285 |
+
PREVIOUS SOLUTIONS:
|
| 286 |
+
1. {solutions[0]['model_name']}: {solutions[0]['solution']}
|
| 287 |
+
2. {solutions[1]['model_name']}: {solutions[1]['solution']}
|
| 288 |
+
JUDGE FEEDBACK: {judgment}
|
| 289 |
+
INSTRUCTIONS:
|
| 290 |
+
- Provide a revised, concise solution in one sentence.
|
| 291 |
+
- Include brief reasoning in one additional sentence.
|
| 292 |
+
- Address the judge's feedback.
|
| 293 |
+
""",
|
| 294 |
+
generation_config=genai.types.GenerationConfig(
|
| 295 |
+
temperature=0.5,
|
| 296 |
+
max_output_tokens=100
|
| 297 |
+
)
|
| 298 |
+
)
|
| 299 |
+
# Handle potential empty response or missing text attribute
|
| 300 |
+
try:
|
| 301 |
+
# First try to access text directly if available
|
| 302 |
+
if hasattr(response, 'text'):
|
| 303 |
+
solution = response.text.strip()
|
| 304 |
+
# Otherwise check for candidates
|
| 305 |
+
elif hasattr(response, 'candidates') and response.candidates:
|
| 306 |
+
# Make sure we have candidates and parts before accessing
|
| 307 |
+
if hasattr(response.candidates[0], 'content') and hasattr(response.candidates[0].content, 'parts'):
|
| 308 |
+
solution = response.candidates[0].content.parts[0].text.strip()
|
| 309 |
+
else:
|
| 310 |
+
logger.warning(f"Gemini response has candidates but missing content structure: {response}")
|
| 311 |
+
solution = "Unable to generate a solution due to API response structure issue."
|
| 312 |
+
else:
|
| 313 |
+
# Fallback for when candidates is empty
|
| 314 |
+
logger.warning(f"Empty response from Gemini API: {response}")
|
| 315 |
+
solution = "Unable to generate a solution due to API response issue."
|
| 316 |
+
except Exception as e:
|
| 317 |
+
logger.error(f"Error extracting text from Gemini response: {e}")
|
| 318 |
+
solution = "Unable to generate a solution due to API response issue."
|
| 319 |
+
|
| 320 |
+
return {"solution": solution, "model_name": self.model_name}
|
| 321 |
+
else:
|
| 322 |
+
return {"solution": f"Error: Missing API configuration for {self.api_provider}", "model_name": self.model_name}
|
| 323 |
+
|
| 324 |
+
except Exception as e:
|
| 325 |
+
logger.error(f"Error in {self.model_name}: {str(e)}")
|
| 326 |
+
return {"solution": f"Error: {str(e)}", "model_name": self.model_name}
|
| 327 |
+
|
| 328 |
+
# --- Model Registry ---
|
| 329 |
+
class ModelRegistry:
|
| 330 |
+
@staticmethod
|
| 331 |
+
def get_available_models():
|
| 332 |
+
"""Get the list of available models grouped by provider (original list)"""
|
| 333 |
+
return {
|
| 334 |
+
"Anthropic": [
|
| 335 |
+
{"name": "Claude 3.5 Sonnet", "id": "claude-3-5-sonnet-20240620", "provider": "anthropic", "type": ["solver"], "icon": "📜"},
|
| 336 |
+
{"name": "Claude 3.7 Sonnet", "id": "claude-3-7-sonnet-20250219", "provider": "anthropic", "type": ["solver"], "icon": "📜"},
|
| 337 |
+
{"name": "Claude 3 Opus", "id": "claude-3-opus-20240229", "provider": "anthropic", "type": ["solver"], "icon": "📜"},
|
| 338 |
+
{"name": "Claude 3 Haiku", "id": "claude-3-haiku-20240307", "provider": "anthropic", "type": ["solver"], "icon": "📜"}
|
| 339 |
+
],
|
| 340 |
+
"OpenAI": [
|
| 341 |
+
{"name": "GPT-4o", "id": "gpt-4o", "provider": "openai", "type": ["solver"], "icon": "🤖"},
|
| 342 |
+
{"name": "GPT-4 Turbo", "id": "gpt-4-turbo", "provider": "openai", "type": ["solver"], "icon": "🤖"},
|
| 343 |
+
{"name": "GPT-4", "id": "gpt-4", "provider": "openai", "type": ["solver"], "icon": "🤖"},
|
| 344 |
+
{"name": "GPT-3.5 Turbo", "id": "gpt-3.5-turbo", "provider": "openai", "type": ["solver"], "icon": "🤖"},
|
| 345 |
+
{"name": "OpenAI o1", "id": "o1", "provider": "openai", "type": ["solver", "judge"], "icon": "🤖"},
|
| 346 |
+
{"name": "OpenAI o3", "id": "o3", "provider": "openai", "type": ["solver", "judge"], "icon": "🤖"}
|
| 347 |
+
],
|
| 348 |
+
"Cohere": [
|
| 349 |
+
{"name": "Cohere Command R", "id": "command-r-08-2024", "provider": "cohere", "type": ["solver"], "icon": "💬"},
|
| 350 |
+
{"name": "Cohere Command R+", "id": "command-r-plus-08-2024", "provider": "cohere", "type": ["solver"], "icon": "💬"}
|
| 351 |
+
],
|
| 352 |
+
"Google": [
|
| 353 |
+
{"name": "Gemini 1.5 Pro", "id": "gemini-1.5-pro", "provider": "gemini", "type": ["solver"], "icon": "🌟"},
|
| 354 |
+
{"name": "Gemini 2.0 Flash Thinking Experimental 01-21", "id": "gemini-2.0-flash-thinking-exp-01-21", "provider": "gemini", "type": ["solver", "judge"], "icon": "🌟"},
|
| 355 |
+
{"name": "Gemini 2.5 Pro Experimental 03-25", "id": "gemini-2.5-pro-exp-03-25", "provider": "gemini", "type": ["solver", "judge"], "icon": "🌟"}
|
| 356 |
+
],
|
| 357 |
+
"HuggingFace": [
|
| 358 |
+
{"name": "Llama 3.3 70B Instruct", "id": "meta-llama/Llama-3.3-70B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 359 |
+
{"name": "Llama 3.2 3B Instruct", "id": "meta-llama/Llama-3.2-3B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 360 |
+
{"name": "Llama 3.1 70B Instruct", "id": "meta-llama/Llama-3.1-70B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 361 |
+
{"name": "Mistral 7B Instruct v0.3", "id": "mistralai/Mistral-7B-Instruct-v0.3", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 362 |
+
{"name": "DeepSeek R1 Distill Qwen 32B", "id": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "provider": "huggingface", "type": ["solver", "judge"], "icon": "🔥"},
|
| 363 |
+
{"name": "DeepSeek Coder V2 Instruct", "id": "deepseek-ai/DeepSeek-Coder-V2-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 364 |
+
{"name": "Qwen 2.5 72B Instruct", "id": "Qwen/Qwen2.5-72B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 365 |
+
{"name": "Qwen 2.5 Coder 32B Instruct", "id": "Qwen/Qwen2.5-Coder-32B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 366 |
+
{"name": "Qwen 2.5 Math 1.5B Instruct", "id": "Qwen/Qwen2.5-Math-1.5B-Instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 367 |
+
{"name": "Gemma 3 27B Instruct", "id": "google/gemma-3-27b-it", "provider": "huggingface", "type": ["solver"], "icon": "🔥"},
|
| 368 |
+
{"name": "Phi-3 Mini 4K Instruct", "id": "microsoft/Phi-3-mini-4k-instruct", "provider": "huggingface", "type": ["solver"], "icon": "🔥"}
|
| 369 |
+
]
|
| 370 |
+
}
|
| 371 |
+
|
| 372 |
+
@staticmethod
|
| 373 |
+
def get_solver_models():
|
| 374 |
+
"""Get models suitable for solver role with provider grouping"""
|
| 375 |
+
all_models = ModelRegistry.get_available_models()
|
| 376 |
+
solver_models = {}
|
| 377 |
+
|
| 378 |
+
for provider, models in all_models.items():
|
| 379 |
+
provider_models = []
|
| 380 |
+
for model in models:
|
| 381 |
+
if "solver" in model["type"]:
|
| 382 |
+
provider_models.append({
|
| 383 |
+
"name": f"{model['icon']} {model['name']} ({provider})",
|
| 384 |
+
"id": model["id"],
|
| 385 |
+
"provider": model["provider"]
|
| 386 |
+
})
|
| 387 |
+
if provider_models:
|
| 388 |
+
solver_models[provider] = provider_models
|
| 389 |
+
|
| 390 |
+
return solver_models
|
| 391 |
+
|
| 392 |
+
@staticmethod
|
| 393 |
+
def get_judge_models():
|
| 394 |
+
"""Get only specific reasoning models suitable for judge role with provider grouping"""
|
| 395 |
+
all_models = ModelRegistry.get_available_models()
|
| 396 |
+
judge_models = {}
|
| 397 |
+
allowed_judge_models = [
|
| 398 |
+
"Gemini 2.0 Flash Thinking Experimental 01-21 (Google)",
|
| 399 |
+
"DeepSeek R1 (HuggingFace)",
|
| 400 |
+
"Gemini 2.5 Pro Experimental 03-25 (Google)",
|
| 401 |
+
"OpenAI o1 (OpenAI)",
|
| 402 |
+
"OpenAI o3 (OpenAI)"
|
| 403 |
+
]
|
| 404 |
+
|
| 405 |
+
for provider, models in all_models.items():
|
| 406 |
+
provider_models = []
|
| 407 |
+
for model in models:
|
| 408 |
+
full_name = f"{model['name']} ({provider})"
|
| 409 |
+
if "judge" in model["type"] and full_name in allowed_judge_models:
|
| 410 |
+
provider_models.append({
|
| 411 |
+
"name": f"{model['icon']} {model['name']} ({provider})",
|
| 412 |
+
"id": model["id"],
|
| 413 |
+
"provider": model["provider"]
|
| 414 |
+
})
|
| 415 |
+
if provider_models:
|
| 416 |
+
judge_models[provider] = provider_models
|
| 417 |
+
|
| 418 |
+
return judge_models
|
| 419 |
+
|
| 420 |
+
# --- Orchestrator Class ---
|
| 421 |
+
class PolyThinkOrchestrator:
|
| 422 |
+
def __init__(self, solver1_config=None, solver2_config=None, judge_config=None, api_clients=None):
|
| 423 |
+
self.solvers = []
|
| 424 |
+
self.judge = None
|
| 425 |
+
self.api_clients = api_clients or {}
|
| 426 |
+
|
| 427 |
+
if solver1_config:
|
| 428 |
+
solver1 = PolyThinkAgent(
|
| 429 |
+
model_name=solver1_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in solver1_config["name"] else solver1_config["name"],
|
| 430 |
+
model_path=solver1_config["id"],
|
| 431 |
+
api_provider=solver1_config["provider"]
|
| 432 |
+
)
|
| 433 |
+
solver1.set_clients(self.api_clients)
|
| 434 |
+
self.solvers.append(solver1)
|
| 435 |
+
|
| 436 |
+
if solver2_config:
|
| 437 |
+
solver2 = PolyThinkAgent(
|
| 438 |
+
model_name=solver2_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in solver2_config["name"] else solver2_config["name"],
|
| 439 |
+
model_path=solver2_config["id"],
|
| 440 |
+
api_provider=solver2_config["provider"]
|
| 441 |
+
)
|
| 442 |
+
solver2.set_clients(self.api_clients)
|
| 443 |
+
self.solvers.append(solver2)
|
| 444 |
+
|
| 445 |
+
if judge_config:
|
| 446 |
+
self.judge = PolyThinkAgent(
|
| 447 |
+
model_name=judge_config["name"].split(" ", 1)[1].rsplit(" (", 1)[0] if " " in judge_config["name"] else judge_config["name"],
|
| 448 |
+
model_path=judge_config["id"],
|
| 449 |
+
role="judge",
|
| 450 |
+
api_provider=judge_config["provider"]
|
| 451 |
+
)
|
| 452 |
+
self.judge.set_clients(self.api_clients)
|
| 453 |
+
|
| 454 |
+
async def get_initial_solutions(self, problem: str) -> List[Dict[str, Any]]:
|
| 455 |
+
tasks = [solver.solve_problem(problem) for solver in self.solvers]
|
| 456 |
+
return await asyncio.gather(*tasks)
|
| 457 |
+
|
| 458 |
+
async def get_judgment(self, problem: str, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 459 |
+
if self.judge:
|
| 460 |
+
return await self.judge.evaluate_solutions(problem, solutions)
|
| 461 |
+
return {"judgment": "No judge configured", "reprompt_needed": False}
|
| 462 |
+
|
| 463 |
+
async def get_revised_solutions(self, problem: str, solutions: List[Dict[str, Any]], judgment: str) -> List[Dict[str, Any]]:
|
| 464 |
+
tasks = [solver.reprompt_with_context(problem, solutions, judgment) for solver in self.solvers]
|
| 465 |
+
return await asyncio.gather(*tasks)
|
| 466 |
+
|
| 467 |
+
def generate_final_report(self, problem: str, history: List[Dict[str, Any]]) -> str:
|
| 468 |
+
report = f"""
|
| 469 |
+
<div class="final-report-container">
|
| 470 |
+
<h2 class="final-report-title">🔍 Final Analysis Report</h2>
|
| 471 |
+
<div class="problem-container">
|
| 472 |
+
<h3 class="problem-title">Problem Statement</h3>
|
| 473 |
+
<div class="problem-content">{problem}</div>
|
| 474 |
+
</div>
|
| 475 |
+
|
| 476 |
+
<div class="timeline-container">
|
| 477 |
+
"""
|
| 478 |
+
|
| 479 |
+
for i, step in enumerate(history, 1):
|
| 480 |
+
if "solutions" in step and i == 1:
|
| 481 |
+
report += f"""
|
| 482 |
+
<div class="timeline-item">
|
| 483 |
+
<div class="timeline-marker">1</div>
|
| 484 |
+
<div class="timeline-content">
|
| 485 |
+
<h4>Initial Solutions</h4>
|
| 486 |
+
<div class="solutions-container">
|
| 487 |
+
"""
|
| 488 |
+
|
| 489 |
+
for sol in step["solutions"]:
|
| 490 |
+
report += f"""
|
| 491 |
+
<div class="solution-item">
|
| 492 |
+
<div class="solution-header">{sol['model_name']}</div>
|
| 493 |
+
<div class="solution-body">{sol['solution']}</div>
|
| 494 |
+
</div>
|
| 495 |
+
"""
|
| 496 |
+
|
| 497 |
+
report += """
|
| 498 |
+
</div>
|
| 499 |
+
</div>
|
| 500 |
+
</div>
|
| 501 |
+
"""
|
| 502 |
+
|
| 503 |
+
elif "judgment" in step:
|
| 504 |
+
is_agreement = "AGREEMENT: YES" in step["judgment"].upper()
|
| 505 |
+
judgment_class = "agreement" if is_agreement else "disagreement"
|
| 506 |
+
judgment_icon = "✅" if is_agreement else "❌"
|
| 507 |
+
|
| 508 |
+
report += f"""
|
| 509 |
+
<div class="timeline-item">
|
| 510 |
+
<div class="timeline-marker">{i}</div>
|
| 511 |
+
<div class="timeline-content">
|
| 512 |
+
<h4>Evaluation {(i+1)//2}</h4>
|
| 513 |
+
<div class="judgment-container {judgment_class}">
|
| 514 |
+
<div class="judgment-icon">{judgment_icon}</div>
|
| 515 |
+
<div class="judgment-text">{step["judgment"]}</div>
|
| 516 |
+
</div>
|
| 517 |
+
</div>
|
| 518 |
+
</div>
|
| 519 |
+
"""
|
| 520 |
+
|
| 521 |
+
elif "solutions" in step and i > 1:
|
| 522 |
+
round_num = (i+1)//2
|
| 523 |
+
report += f"""
|
| 524 |
+
<div class="timeline-item">
|
| 525 |
+
<div class="timeline-marker">{i}</div>
|
| 526 |
+
<div class="timeline-content">
|
| 527 |
+
<h4>Revised Solutions (Round {round_num})</h4>
|
| 528 |
+
<div class="solutions-container">
|
| 529 |
+
"""
|
| 530 |
+
|
| 531 |
+
for sol in step["solutions"]:
|
| 532 |
+
report += f"""
|
| 533 |
+
<div class="solution-item">
|
| 534 |
+
<div class="solution-header">{sol['model_name']}</div>
|
| 535 |
+
<div class="solution-body">{sol['solution']}</div>
|
| 536 |
+
</div>
|
| 537 |
+
"""
|
| 538 |
+
|
| 539 |
+
report += """
|
| 540 |
+
</div>
|
| 541 |
+
</div>
|
| 542 |
+
</div>
|
| 543 |
+
"""
|
| 544 |
+
|
| 545 |
+
last_judgment = next((step.get("judgment", "") for step in reversed(history) if "judgment" in step), "")
|
| 546 |
+
if "AGREEMENT: YES" in last_judgment.upper():
|
| 547 |
+
confidence = "100%" if len(history) == 2 else "80%"
|
| 548 |
+
report += f"""
|
| 549 |
+
<div class="conclusion-container agreement">
|
| 550 |
+
<h3>Conclusion</h3>
|
| 551 |
+
<div class="conclusion-content">
|
| 552 |
+
<div class="conclusion-icon">✅</div>
|
| 553 |
+
<div class="conclusion-text">
|
| 554 |
+
<p>Models reached <strong>AGREEMENT</strong></p>
|
| 555 |
+
<p>Confidence level: <strong>{confidence}</strong></p>
|
| 556 |
+
</div>
|
| 557 |
+
</div>
|
| 558 |
+
</div>
|
| 559 |
+
"""
|
| 560 |
+
else:
|
| 561 |
+
report += f"""
|
| 562 |
+
<div class="conclusion-container disagreement">
|
| 563 |
+
<h3>Conclusion</h3>
|
| 564 |
+
<div class="conclusion-content">
|
| 565 |
+
<div class="conclusion-icon">❓</div>
|
| 566 |
+
<div class="conclusion-text">
|
| 567 |
+
<p>Models could not reach agreement</p>
|
| 568 |
+
<p>Review all solutions above for best answer</p>
|
| 569 |
+
</div>
|
| 570 |
+
</div>
|
| 571 |
+
</div>
|
| 572 |
+
"""
|
| 573 |
+
|
| 574 |
+
report += """
|
| 575 |
+
</div>
|
| 576 |
+
</div>
|
| 577 |
+
"""
|
| 578 |
+
|
| 579 |
+
return report
|
| 580 |
+
|
| 581 |
+
# --- Gradio Interface ---
|
| 582 |
+
def create_polythink_interface():
|
| 583 |
+
custom_css = """
|
| 584 |
+
/* Reverted to Original Black Theme */
|
| 585 |
+
body {
|
| 586 |
+
background: #000000;
|
| 587 |
+
color: #ffffff;
|
| 588 |
+
font-family: 'Arial', sans-serif;
|
| 589 |
+
}
|
| 590 |
+
.gradio-container {
|
| 591 |
+
background: #1a1a1a;
|
| 592 |
+
border-radius: 10px;
|
| 593 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
|
| 594 |
+
padding: 20px;
|
| 595 |
+
}
|
| 596 |
+
.gr-button {
|
| 597 |
+
background: linear-gradient(45deg, #666666, #999999);
|
| 598 |
+
color: #ffffff;
|
| 599 |
+
border: none;
|
| 600 |
+
padding: 10px 20px;
|
| 601 |
+
border-radius: 5px;
|
| 602 |
+
transition: all 0.3s ease;
|
| 603 |
+
}
|
| 604 |
+
.gr-button:hover {
|
| 605 |
+
background: linear-gradient(45deg, #555555, #888888);
|
| 606 |
+
transform: translateY(-2px);
|
| 607 |
+
}
|
| 608 |
+
.gr-textbox {
|
| 609 |
+
background: #333333;
|
| 610 |
+
color: #ffffff;
|
| 611 |
+
border: 1px solid #444444;
|
| 612 |
+
border-radius: 5px;
|
| 613 |
+
padding: 10px;
|
| 614 |
+
}
|
| 615 |
+
.gr-slider {
|
| 616 |
+
background: #333333;
|
| 617 |
+
border-radius: 5px;
|
| 618 |
+
}
|
| 619 |
+
.gr-slider .track-fill {
|
| 620 |
+
background: #cccccc;
|
| 621 |
+
}
|
| 622 |
+
.step-section {
|
| 623 |
+
background: #1a1a1a;
|
| 624 |
+
border-radius: 8px;
|
| 625 |
+
padding: 15px;
|
| 626 |
+
margin-bottom: 20px;
|
| 627 |
+
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.3);
|
| 628 |
+
}
|
| 629 |
+
.step-section h3 {
|
| 630 |
+
color: #cccccc;
|
| 631 |
+
margin-top: 0;
|
| 632 |
+
font-size: 1.5em;
|
| 633 |
+
}
|
| 634 |
+
.step-section p {
|
| 635 |
+
color: #aaaaaa;
|
| 636 |
+
line-height: 1.6;
|
| 637 |
+
}
|
| 638 |
+
.step-section code {
|
| 639 |
+
background: #333333;
|
| 640 |
+
padding: 2px 6px;
|
| 641 |
+
border-radius: 3px;
|
| 642 |
+
color: #ff6b6b;
|
| 643 |
+
}
|
| 644 |
+
.step-section strong {
|
| 645 |
+
color: #ffffff;
|
| 646 |
+
}
|
| 647 |
+
.status-bar {
|
| 648 |
+
background: #1a1a1a;
|
| 649 |
+
padding: 10px;
|
| 650 |
+
border-radius: 5px;
|
| 651 |
+
font-size: 1.1em;
|
| 652 |
+
margin-bottom: 20px;
|
| 653 |
+
border-left: 4px solid #666666;
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
/* Agreement/Disagreement styling */
|
| 657 |
+
.agreement {
|
| 658 |
+
color: #4CAF50 !important;
|
| 659 |
+
border: 1px solid #4CAF50;
|
| 660 |
+
background-color: rgba(76, 175, 80, 0.1) !important;
|
| 661 |
+
padding: 10px;
|
| 662 |
+
border-radius: 5px;
|
| 663 |
+
}
|
| 664 |
+
|
| 665 |
+
.disagreement {
|
| 666 |
+
color: #F44336 !important;
|
| 667 |
+
border: 1px solid #F44336;
|
| 668 |
+
background-color: rgba(244, 67, 54, 0.1) !important;
|
| 669 |
+
padding: 10px;
|
| 670 |
+
border-radius: 5px;
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
/* Enhanced Final Report Styling */
|
| 674 |
+
.final-report {
|
| 675 |
+
background: #111111;
|
| 676 |
+
padding: 0;
|
| 677 |
+
border-radius: 8px;
|
| 678 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
|
| 679 |
+
margin-top: 20px;
|
| 680 |
+
overflow: hidden;
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
.final-report-container {
|
| 684 |
+
font-family: 'Arial', sans-serif;
|
| 685 |
+
}
|
| 686 |
+
|
| 687 |
+
.final-report-title {
|
| 688 |
+
background: linear-gradient(45deg, #333333, #444444);
|
| 689 |
+
color: #ffffff;
|
| 690 |
+
padding: 20px;
|
| 691 |
+
margin: 0;
|
| 692 |
+
border-bottom: 1px solid #555555;
|
| 693 |
+
font-size: 24px;
|
| 694 |
+
text-align: center;
|
| 695 |
+
}
|
| 696 |
+
|
| 697 |
+
.problem-container {
|
| 698 |
+
background: #222222;
|
| 699 |
+
padding: 15px 20px;
|
| 700 |
+
margin: 0;
|
| 701 |
+
border-bottom: 1px solid #333333;
|
| 702 |
+
}
|
| 703 |
+
|
| 704 |
+
.problem-title {
|
| 705 |
+
color: #bbbbbb;
|
| 706 |
+
margin: 0 0 10px 0;
|
| 707 |
+
font-size: 18px;
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
.problem-content {
|
| 711 |
+
background: #333333;
|
| 712 |
+
padding: 15px;
|
| 713 |
+
border-radius: 5px;
|
| 714 |
+
font-family: monospace;
|
| 715 |
+
font-size: 16px;
|
| 716 |
+
color: #ffffff;
|
| 717 |
+
}
|
| 718 |
+
|
| 719 |
+
.timeline-container {
|
| 720 |
+
padding: 20px;
|
| 721 |
+
}
|
| 722 |
+
|
| 723 |
+
.timeline-item {
|
| 724 |
+
display: flex;
|
| 725 |
+
margin-bottom: 25px;
|
| 726 |
+
position: relative;
|
| 727 |
+
}
|
| 728 |
+
|
| 729 |
+
.timeline-item:before {
|
| 730 |
+
content: '';
|
| 731 |
+
position: absolute;
|
| 732 |
+
left: 15px;
|
| 733 |
+
top: 30px;
|
| 734 |
+
bottom: -25px;
|
| 735 |
+
width: 2px;
|
| 736 |
+
background: #444444;
|
| 737 |
+
z-index: 0;
|
| 738 |
+
}
|
| 739 |
+
|
| 740 |
+
.timeline-item:last-child:before {
|
| 741 |
+
display: none;
|
| 742 |
+
}
|
| 743 |
+
|
| 744 |
+
.timeline-marker {
|
| 745 |
+
width: 34px;
|
| 746 |
+
height: 34px;
|
| 747 |
+
border-radius: 50%;
|
| 748 |
+
background: #333333;
|
| 749 |
+
display: flex;
|
| 750 |
+
align-items: center;
|
| 751 |
+
justify-content: center;
|
| 752 |
+
font-weight: bold;
|
| 753 |
+
position: relative;
|
| 754 |
+
z-index: 1;
|
| 755 |
+
border: 2px solid #555555;
|
| 756 |
+
margin-right: 15px;
|
| 757 |
+
}
|
| 758 |
+
|
| 759 |
+
.timeline-content {
|
| 760 |
+
flex: 1;
|
| 761 |
+
background: #1d1d1d;
|
| 762 |
+
border-radius: 5px;
|
| 763 |
+
padding: 15px;
|
| 764 |
+
border: 1px solid #333333;
|
| 765 |
+
}
|
| 766 |
+
|
| 767 |
+
.timeline-content h4 {
|
| 768 |
+
margin-top: 0;
|
| 769 |
+
margin-bottom: 15px;
|
| 770 |
+
color: #cccccc;
|
| 771 |
+
border-bottom: 1px solid #333333;
|
| 772 |
+
padding-bottom: 8px;
|
| 773 |
+
}
|
| 774 |
+
|
| 775 |
+
.solutions-container {
|
| 776 |
+
display: flex;
|
| 777 |
+
flex-wrap: wrap;
|
| 778 |
+
gap: 10px;
|
| 779 |
+
}
|
| 780 |
+
|
| 781 |
+
.solution-item {
|
| 782 |
+
flex: 1;
|
| 783 |
+
min-width: 250px;
|
| 784 |
+
background: #252525;
|
| 785 |
+
border-radius: 5px;
|
| 786 |
+
overflow: hidden;
|
| 787 |
+
border: 1px solid #383838;
|
| 788 |
+
}
|
| 789 |
+
|
| 790 |
+
.solution-header {
|
| 791 |
+
background: #333333;
|
| 792 |
+
padding: 8px 12px;
|
| 793 |
+
font-weight: bold;
|
| 794 |
+
color: #dddddd;
|
| 795 |
+
border-bottom: 1px solid #444444;
|
| 796 |
+
}
|
| 797 |
+
|
| 798 |
+
.solution-body {
|
| 799 |
+
padding: 12px;
|
| 800 |
+
color: #bbbbbb;
|
| 801 |
+
}
|
| 802 |
+
|
| 803 |
+
.judgment-container {
|
| 804 |
+
display: flex;
|
| 805 |
+
align-items: center;
|
| 806 |
+
padding: 10px;
|
| 807 |
+
border-radius: 5px;
|
| 808 |
+
}
|
| 809 |
+
|
| 810 |
+
.judgment-icon {
|
| 811 |
+
font-size: 24px;
|
| 812 |
+
margin-right: 15px;
|
| 813 |
+
}
|
| 814 |
+
|
| 815 |
+
.conclusion-container {
|
| 816 |
+
margin-top: 30px;
|
| 817 |
+
border-radius: 5px;
|
| 818 |
+
padding: 5px 15px 15px;
|
| 819 |
+
}
|
| 820 |
+
|
| 821 |
+
.conclusion-content {
|
| 822 |
+
display: flex;
|
| 823 |
+
align-items: center;
|
| 824 |
+
}
|
| 825 |
+
|
| 826 |
+
.conclusion-icon {
|
| 827 |
+
font-size: 36px;
|
| 828 |
+
margin-right: 20px;
|
| 829 |
+
}
|
| 830 |
+
|
| 831 |
+
.conclusion-text {
|
| 832 |
+
flex: 1;
|
| 833 |
+
}
|
| 834 |
+
|
| 835 |
+
.conclusion-text p {
|
| 836 |
+
margin: 5px 0;
|
| 837 |
+
}
|
| 838 |
+
|
| 839 |
+
/* Header styling */
|
| 840 |
+
.app-header {
|
| 841 |
+
background: linear-gradient(45deg, #222222, #333333);
|
| 842 |
+
padding: 20px;
|
| 843 |
+
border-radius: 10px;
|
| 844 |
+
margin-bottom: 20px;
|
| 845 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3);
|
| 846 |
+
border: 1px solid #444444;
|
| 847 |
+
}
|
| 848 |
+
|
| 849 |
+
.app-title {
|
| 850 |
+
font-size: 28px;
|
| 851 |
+
margin: 0 0 10px 0;
|
| 852 |
+
background: -webkit-linear-gradient(45deg, #cccccc, #ffffff);
|
| 853 |
+
-webkit-background-clip: text;
|
| 854 |
+
-webkit-text-fill-color: transparent;
|
| 855 |
+
display: inline-block;
|
| 856 |
+
}
|
| 857 |
+
|
| 858 |
+
.app-subtitle {
|
| 859 |
+
font-size: 16px;
|
| 860 |
+
color: #aaaaaa;
|
| 861 |
+
margin: 0;
|
| 862 |
+
}
|
| 863 |
+
|
| 864 |
+
/* Button style */
|
| 865 |
+
.primary-button {
|
| 866 |
+
background: linear-gradient(45deg, #555555, #777777) !important;
|
| 867 |
+
border: none !important;
|
| 868 |
+
color: white !important;
|
| 869 |
+
padding: 12px 24px !important;
|
| 870 |
+
font-weight: bold !important;
|
| 871 |
+
transition: all 0.3s ease !important;
|
| 872 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.3) !important;
|
| 873 |
+
}
|
| 874 |
+
|
| 875 |
+
.primary-button:hover {
|
| 876 |
+
transform: translateY(-2px) !important;
|
| 877 |
+
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.4) !important;
|
| 878 |
+
background: linear-gradient(45deg, #666666, #888888) !important;
|
| 879 |
+
}
|
| 880 |
+
"""
|
| 881 |
+
|
| 882 |
+
# Hardcoded model configurations
|
| 883 |
+
solver1_config = {
|
| 884 |
+
"name": "Cohere Command R",
|
| 885 |
+
"id": "command-r-08-2024",
|
| 886 |
+
"provider": "cohere"
|
| 887 |
+
}
|
| 888 |
+
|
| 889 |
+
solver2_config = {
|
| 890 |
+
"name": "Llama 3.2 3B Instruct",
|
| 891 |
+
"id": "meta-llama/Llama-3.2-3B-Instruct",
|
| 892 |
+
"provider": "huggingface"
|
| 893 |
+
}
|
| 894 |
+
|
| 895 |
+
judge_config = {
|
| 896 |
+
"name": "Gemini 2.0 Flash Thinking Experimental 01-21",
|
| 897 |
+
"id": "gemini-2.0-flash-thinking-exp-01-21",
|
| 898 |
+
"provider": "gemini"
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
async def solve_problem(problem: str, max_rounds: int):
|
| 902 |
+
# Get API keys from environment variables
|
| 903 |
+
api_clients = {}
|
| 904 |
+
|
| 905 |
+
# Cohere client
|
| 906 |
+
cohere_key = os.getenv("COHERE_API_KEY")
|
| 907 |
+
if cohere_key:
|
| 908 |
+
api_clients["cohere"] = cohere.Client(cohere_key)
|
| 909 |
+
|
| 910 |
+
# Hugging Face client
|
| 911 |
+
hf_key = os.getenv("HF_API_KEY")
|
| 912 |
+
if hf_key:
|
| 913 |
+
api_clients["huggingface"] = hf_key
|
| 914 |
+
|
| 915 |
+
# Gemini client
|
| 916 |
+
gemini_key = os.getenv("GEMINI_API_KEY")
|
| 917 |
+
if gemini_key:
|
| 918 |
+
genai.configure(api_key=gemini_key)
|
| 919 |
+
api_clients["gemini"] = genai
|
| 920 |
+
|
| 921 |
+
# Check if all required API keys are present
|
| 922 |
+
required_providers = {solver1_config["provider"], solver2_config["provider"], judge_config["provider"]}
|
| 923 |
+
missing_keys = [p for p in required_providers if p not in api_clients]
|
| 924 |
+
if missing_keys:
|
| 925 |
+
yield [
|
| 926 |
+
gr.update(value=f"Error: Missing API keys for {', '.join(missing_keys)}", visible=True),
|
| 927 |
+
gr.update(visible=False),
|
| 928 |
+
gr.update(visible=False),
|
| 929 |
+
gr.update(visible=False),
|
| 930 |
+
gr.update(visible=False),
|
| 931 |
+
gr.update(visible=False),
|
| 932 |
+
gr.update(visible=False),
|
| 933 |
+
gr.update(visible=False),
|
| 934 |
+
gr.update(value=f"### Status: ❌ Missing API keys for {', '.join(missing_keys)}", visible=True)
|
| 935 |
+
]
|
| 936 |
+
return
|
| 937 |
+
|
| 938 |
+
orchestrator = PolyThinkOrchestrator(solver1_config, solver2_config, judge_config, api_clients)
|
| 939 |
+
|
| 940 |
+
initial_solutions = await orchestrator.get_initial_solutions(problem)
|
| 941 |
+
initial_content = f"## Initial Solutions\n**Problem:** `{problem}`\n\n**Solutions:**\n- **{initial_solutions[0]['model_name']}**: {initial_solutions[0]['solution']}\n- **{initial_solutions[1]['model_name']}**: {initial_solutions[1]['solution']}"
|
| 942 |
+
yield [
|
| 943 |
+
gr.update(value=initial_content, visible=True),
|
| 944 |
+
gr.update(value="", visible=False),
|
| 945 |
+
gr.update(value="", visible=False),
|
| 946 |
+
gr.update(value="", visible=False),
|
| 947 |
+
gr.update(value="", visible=False),
|
| 948 |
+
gr.update(value="", visible=False),
|
| 949 |
+
gr.update(value="", visible=False),
|
| 950 |
+
gr.update(value="", visible=False),
|
| 951 |
+
gr.update(value="### Status: 📋 Initial solutions generated", visible=True)
|
| 952 |
+
]
|
| 953 |
+
await asyncio.sleep(1)
|
| 954 |
+
|
| 955 |
+
solutions = initial_solutions
|
| 956 |
+
history = [{"solutions": initial_solutions}]
|
| 957 |
+
max_outputs = max(int(max_rounds) * 2, 6)
|
| 958 |
+
round_outputs = [""] * max_outputs
|
| 959 |
+
|
| 960 |
+
for round_num in range(int(max_rounds)):
|
| 961 |
+
judgment = await orchestrator.get_judgment(problem, solutions)
|
| 962 |
+
history.append({"judgment": judgment["judgment"]})
|
| 963 |
+
|
| 964 |
+
is_agreement = "AGREEMENT: YES" in judgment["judgment"].upper()
|
| 965 |
+
agreement_class = "agreement" if is_agreement else "disagreement"
|
| 966 |
+
agreement_icon = "✅" if is_agreement else "❌"
|
| 967 |
+
|
| 968 |
+
judgment_content = f"## Round {round_num + 1} Judgment\n**Evaluation:** <div class='{agreement_class}'>{agreement_icon} {judgment['judgment']}</div>"
|
| 969 |
+
round_outputs[round_num * 2] = judgment_content
|
| 970 |
+
|
| 971 |
+
yield [
|
| 972 |
+
gr.update(value=initial_content, visible=True),
|
| 973 |
+
gr.update(value=round_outputs[0], visible=bool(round_outputs[0])),
|
| 974 |
+
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
|
| 975 |
+
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
|
| 976 |
+
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
|
| 977 |
+
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
|
| 978 |
+
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
|
| 979 |
+
gr.update(value="", visible=False),
|
| 980 |
+
gr.update(value=f"### Status: 🔍 Round {round_num + 1} judgment complete", visible=True)
|
| 981 |
+
]
|
| 982 |
+
await asyncio.sleep(1)
|
| 983 |
+
|
| 984 |
+
if not judgment["reprompt_needed"]:
|
| 985 |
+
break
|
| 986 |
+
|
| 987 |
+
revised_solutions = await orchestrator.get_revised_solutions(problem, solutions, judgment["judgment"])
|
| 988 |
+
history.append({"solutions": revised_solutions})
|
| 989 |
+
revision_content = f"## Round {round_num + 1} Revised Solutions\n**Revised Solutions:**\n- **{revised_solutions[0]['model_name']}**: {revised_solutions[0]['solution']}\n- **{revised_solutions[1]['model_name']}**: {revised_solutions[1]['solution']}"
|
| 990 |
+
round_outputs[round_num * 2 + 1] = revision_content
|
| 991 |
+
yield [
|
| 992 |
+
gr.update(value=initial_content, visible=True),
|
| 993 |
+
gr.update(value=round_outputs[0], visible=bool(round_outputs[0])),
|
| 994 |
+
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
|
| 995 |
+
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
|
| 996 |
+
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
|
| 997 |
+
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
|
| 998 |
+
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
|
| 999 |
+
gr.update(value="", visible=False),
|
| 1000 |
+
gr.update(value=f"### Status: 🔄 Round {round_num + 1} revised solutions generated", visible=True)
|
| 1001 |
+
]
|
| 1002 |
+
await asyncio.sleep(1)
|
| 1003 |
+
solutions = revised_solutions
|
| 1004 |
+
|
| 1005 |
+
final_report_content = orchestrator.generate_final_report(problem, history)
|
| 1006 |
+
yield [
|
| 1007 |
+
gr.update(value=initial_content, visible=True),
|
| 1008 |
+
gr.update(value=round_outputs[0], visible=True),
|
| 1009 |
+
gr.update(value=round_outputs[1], visible=bool(round_outputs[1])),
|
| 1010 |
+
gr.update(value=round_outputs[2], visible=bool(round_outputs[2])),
|
| 1011 |
+
gr.update(value=round_outputs[3], visible=bool(round_outputs[3])),
|
| 1012 |
+
gr.update(value=round_outputs[4], visible=bool(round_outputs[4])),
|
| 1013 |
+
gr.update(value=round_outputs[5], visible=bool(round_outputs[5])),
|
| 1014 |
+
gr.update(value=final_report_content, visible=True),
|
| 1015 |
+
gr.update(value=f"### Status: ✨ Process complete! Completed {round_num + 1} round(s)", visible=True)
|
| 1016 |
+
]
|
| 1017 |
+
|
| 1018 |
+
with gr.Blocks(title="PolyThink Alpha", css=custom_css) as demo:
|
| 1019 |
+
with gr.Column(elem_classes=["app-header"]):
|
| 1020 |
+
gr.Markdown("<h1 class='app-title'>PolyThink Alpha</h1>", show_label=False)
|
| 1021 |
+
gr.Markdown("<p class='app-subtitle'>Multi-Agent Problem Solving System</p>", show_label=False)
|
| 1022 |
+
|
| 1023 |
+
with gr.Row():
|
| 1024 |
+
with gr.Column(scale=2):
|
| 1025 |
+
gr.Markdown("### Problem Input")
|
| 1026 |
+
problem_input = gr.Textbox(label="Problem", placeholder="e.g., What is 32 + 63?", lines=3)
|
| 1027 |
+
rounds_slider = gr.Slider(2, 6, value=2, step=1, label="Maximum Rounds")
|
| 1028 |
+
solve_button = gr.Button("Solve Problem", elem_classes=["primary-button"])
|
| 1029 |
+
|
| 1030 |
+
status_text = gr.Markdown("### Status: Ready", elem_classes=["status-bar"], visible=True)
|
| 1031 |
+
|
| 1032 |
+
with gr.Column():
|
| 1033 |
+
initial_solutions = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1034 |
+
round_judgment_1 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1035 |
+
revised_solutions_1 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1036 |
+
round_judgment_2 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1037 |
+
revised_solutions_2 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1038 |
+
round_judgment_3 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1039 |
+
revised_solutions_3 = gr.Markdown(elem_classes=["step-section"], visible=False)
|
| 1040 |
+
final_report = gr.HTML(elem_classes=["final-report"], visible=False)
|
| 1041 |
+
|
| 1042 |
+
solve_button.click(
|
| 1043 |
+
fn=solve_problem,
|
| 1044 |
+
inputs=[
|
| 1045 |
+
problem_input,
|
| 1046 |
+
rounds_slider
|
| 1047 |
+
],
|
| 1048 |
+
outputs=[
|
| 1049 |
+
initial_solutions,
|
| 1050 |
+
round_judgment_1,
|
| 1051 |
+
revised_solutions_1,
|
| 1052 |
+
round_judgment_2,
|
| 1053 |
+
revised_solutions_2,
|
| 1054 |
+
round_judgment_3,
|
| 1055 |
+
revised_solutions_3,
|
| 1056 |
+
final_report,
|
| 1057 |
+
status_text
|
| 1058 |
+
]
|
| 1059 |
+
)
|
| 1060 |
+
|
| 1061 |
+
return demo.queue()
|
| 1062 |
+
|
| 1063 |
+
if __name__ == "__main__":
|
| 1064 |
+
demo = create_polythink_interface()
|
| 1065 |
+
demo.launch(share=True)
|
README.md
CHANGED
|
@@ -1,13 +1,71 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: PolyThink
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
-
app_file:
|
| 9 |
-
pinned:
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: PolyThink-YC
|
| 3 |
+
emoji: 💭
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: gray
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "5.11.0"
|
| 8 |
+
app_file: App.py
|
| 9 |
+
pinned: true
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# PolyThink Multi-Agent Problem Solver
|
| 13 |
+
|
| 14 |
+
A multi-agent system that uses multiple AI models to solve problems collaboratively through a consensus-based approach.
|
| 15 |
+
|
| 16 |
+
## Architecture
|
| 17 |
+
|
| 18 |
+
PolyThink uses a multi-agent architecture with three specialized AI models:
|
| 19 |
+
|
| 20 |
+
1. **Solver Agents**:
|
| 21 |
+
- **Cohere Command R**: A powerful reasoning model that generates concise solutions
|
| 22 |
+
- **Llama 3.2 3B**: A Meta AI model that provides alternative perspectives
|
| 23 |
+
|
| 24 |
+
2. **Judge Agent**:
|
| 25 |
+
- **Gemini 2.0 Flash Thinking**: Evaluates solutions from solver agents and determines if they agree
|
| 26 |
+
|
| 27 |
+
The system works through multiple rounds of solution refinement until consensus is reached or the maximum number of rounds is completed.
|
| 28 |
+
|
| 29 |
+
## Setup
|
| 30 |
+
|
| 31 |
+
1. Clone this repository
|
| 32 |
+
2. Install dependencies:
|
| 33 |
+
```bash
|
| 34 |
+
pip install -r requirements.txt
|
| 35 |
+
```
|
| 36 |
+
3. Set up your API keys:
|
| 37 |
+
- Get your Hugging Face token from [Hugging Face](https://huggingface.co/settings/tokens)
|
| 38 |
+
- Get your Cohere API key from [Cohere](https://dashboard.cohere.com/api-keys)
|
| 39 |
+
- Get your Gemini API key from [Google AI Studio](https://makersuite.google.com/app/apikey)
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
|
| 43 |
+
Run the application:
|
| 44 |
+
```bash
|
| 45 |
+
python App.py
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
The application will launch a Gradio interface where you can:
|
| 49 |
+
1. Enter your API keys for each service
|
| 50 |
+
2. Input a problem or question
|
| 51 |
+
3. Choose the number of rounds for solution refinement (1-3)
|
| 52 |
+
4. Watch as multiple AI agents collaborate to solve the problem in real-time
|
| 53 |
+
|
| 54 |
+
## Process Flow
|
| 55 |
+
|
| 56 |
+
1. Two solver agents generate initial solutions independently
|
| 57 |
+
2. The judge agent evaluates if the solutions agree
|
| 58 |
+
3. If solutions disagree, solver agents refine their answers based on feedback
|
| 59 |
+
4. Process repeats until agreement is reached or max rounds completed
|
| 60 |
+
5. A final report is generated showing the problem-solving process
|
| 61 |
+
|
| 62 |
+
## Dependencies
|
| 63 |
+
|
| 64 |
+
- gradio: Web interface framework
|
| 65 |
+
- huggingface_hub: Access to Hugging Face models
|
| 66 |
+
- cohere: Access to Cohere models
|
| 67 |
+
- google-genai: Access to Google's Gemini models
|
| 68 |
+
|
| 69 |
+
## Note
|
| 70 |
+
|
| 71 |
+
This application requires valid API keys for Hugging Face, Cohere, and Google Gemini. Make sure you have sufficient API credits for your usage.
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
huggingface_hub
|
| 3 |
+
cohere
|
| 4 |
+
google-genai
|