Spaces:
Running
on
Zero
Running
on
Zero
| from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner | |
| from .data import VideoData, get_video_fps, save_video, search_for_images | |
| import os | |
| import gradio as gr | |
| def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder): | |
| frames_guide = VideoData(video_guide, video_guide_folder) | |
| frames_style = VideoData(video_style, video_style_folder) | |
| message = "" | |
| if len(frames_guide) < len(frames_style): | |
| message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n" | |
| frames_style.set_length(len(frames_guide)) | |
| elif len(frames_guide) > len(frames_style): | |
| message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n" | |
| frames_guide.set_length(len(frames_style)) | |
| height_guide, width_guide = frames_guide.shape() | |
| height_style, width_style = frames_style.shape() | |
| if height_guide != height_style or width_guide != width_style: | |
| message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n" | |
| frames_style.set_shape(height_guide, width_guide) | |
| return frames_guide, frames_style, message | |
| def smooth_video( | |
| video_guide, | |
| video_guide_folder, | |
| video_style, | |
| video_style_folder, | |
| mode, | |
| window_size, | |
| batch_size, | |
| tracking_window_size, | |
| output_path, | |
| fps, | |
| minimum_patch_size, | |
| num_iter, | |
| guide_weight, | |
| initialize, | |
| progress = None, | |
| ): | |
| # input | |
| frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder) | |
| if len(message) > 0: | |
| print(message) | |
| # output | |
| if output_path == "": | |
| if video_style is None: | |
| output_path = os.path.join(video_style_folder, "output") | |
| else: | |
| output_path = os.path.join(os.path.split(video_style)[0], "output") | |
| os.makedirs(output_path, exist_ok=True) | |
| print("No valid output_path. Your video will be saved here:", output_path) | |
| elif not os.path.exists(output_path): | |
| os.makedirs(output_path, exist_ok=True) | |
| print("Your video will be saved here:", output_path) | |
| frames_path = os.path.join(output_path, "frames") | |
| video_path = os.path.join(output_path, "video.mp4") | |
| os.makedirs(frames_path, exist_ok=True) | |
| # process | |
| if mode == "Fast" or mode == "Balanced": | |
| tracking_window_size = 0 | |
| ebsynth_config = { | |
| "minimum_patch_size": minimum_patch_size, | |
| "threads_per_block": 8, | |
| "num_iter": num_iter, | |
| "gpu_id": 0, | |
| "guide_weight": guide_weight, | |
| "initialize": initialize, | |
| "tracking_window_size": tracking_window_size, | |
| } | |
| if mode == "Fast": | |
| FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) | |
| elif mode == "Balanced": | |
| BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) | |
| elif mode == "Accurate": | |
| AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) | |
| # output | |
| try: | |
| fps = int(fps) | |
| except: | |
| fps = get_video_fps(video_style) if video_style is not None else 30 | |
| print("Fps:", fps) | |
| print("Saving video...") | |
| video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps) | |
| print("Success!") | |
| print("Your frames are here:", frames_path) | |
| print("Your video is here:", video_path) | |
| return output_path, fps, video_path | |
| class KeyFrameMatcher: | |
| def __init__(self): | |
| pass | |
| def extract_number_from_filename(self, file_name): | |
| result = [] | |
| number = -1 | |
| for i in file_name: | |
| if ord(i)>=ord("0") and ord(i)<=ord("9"): | |
| if number == -1: | |
| number = 0 | |
| number = number*10 + ord(i) - ord("0") | |
| else: | |
| if number != -1: | |
| result.append(number) | |
| number = -1 | |
| if number != -1: | |
| result.append(number) | |
| result = tuple(result) | |
| return result | |
| def extract_number_from_filenames(self, file_names): | |
| numbers = [self.extract_number_from_filename(file_name) for file_name in file_names] | |
| min_length = min(len(i) for i in numbers) | |
| for i in range(min_length-1, -1, -1): | |
| if len(set(number[i] for number in numbers))==len(file_names): | |
| return [number[i] for number in numbers] | |
| return list(range(len(file_names))) | |
| def match_using_filename(self, file_names_a, file_names_b): | |
| file_names_b_set = set(file_names_b) | |
| matched_file_name = [] | |
| for file_name in file_names_a: | |
| if file_name not in file_names_b_set: | |
| matched_file_name.append(None) | |
| else: | |
| matched_file_name.append(file_name) | |
| return matched_file_name | |
| def match_using_numbers(self, file_names_a, file_names_b): | |
| numbers_a = self.extract_number_from_filenames(file_names_a) | |
| numbers_b = self.extract_number_from_filenames(file_names_b) | |
| numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)} | |
| matched_file_name = [] | |
| for number in numbers_a: | |
| if number in numbers_b_dict: | |
| matched_file_name.append(numbers_b_dict[number]) | |
| else: | |
| matched_file_name.append(None) | |
| return matched_file_name | |
| def match_filenames(self, file_names_a, file_names_b): | |
| matched_file_name = self.match_using_filename(file_names_a, file_names_b) | |
| if sum([i is not None for i in matched_file_name]) > 0: | |
| return matched_file_name | |
| matched_file_name = self.match_using_numbers(file_names_a, file_names_b) | |
| return matched_file_name | |
| def detect_frames(frames_path, keyframes_path): | |
| if not os.path.exists(frames_path) and not os.path.exists(keyframes_path): | |
| return "Please input the directory of guide video and rendered frames" | |
| elif not os.path.exists(frames_path): | |
| return "Please input the directory of guide video" | |
| elif not os.path.exists(keyframes_path): | |
| return "Please input the directory of rendered frames" | |
| frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] | |
| keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] | |
| if len(frames)==0: | |
| return f"No images detected in {frames_path}" | |
| if len(keyframes)==0: | |
| return f"No images detected in {keyframes_path}" | |
| matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) | |
| max_filename_length = max([len(i) for i in frames]) | |
| if sum([i is not None for i in matched_keyframes])==0: | |
| message = "" | |
| for frame, matched_keyframe in zip(frames, matched_keyframes): | |
| message += frame + " " * (max_filename_length - len(frame) + 1) | |
| message += "--> No matched keyframes\n" | |
| else: | |
| message = "" | |
| for frame, matched_keyframe in zip(frames, matched_keyframes): | |
| message += frame + " " * (max_filename_length - len(frame) + 1) | |
| if matched_keyframe is None: | |
| message += "--> [to be rendered]\n" | |
| else: | |
| message += f"--> {matched_keyframe}\n" | |
| return message | |
| def check_input_for_interpolating(frames_path, keyframes_path): | |
| # search for images | |
| frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] | |
| keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] | |
| # match frames | |
| matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) | |
| file_list = [file_name for file_name in matched_keyframes if file_name is not None] | |
| index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None] | |
| frames_guide = VideoData(None, frames_path) | |
| frames_style = VideoData(None, keyframes_path, file_list=file_list) | |
| # match shape | |
| message = "" | |
| height_guide, width_guide = frames_guide.shape() | |
| height_style, width_style = frames_style.shape() | |
| if height_guide != height_style or width_guide != width_style: | |
| message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n" | |
| frames_style.set_shape(height_guide, width_guide) | |
| return frames_guide, frames_style, index_style, message | |
| def interpolate_video( | |
| frames_path, | |
| keyframes_path, | |
| output_path, | |
| fps, | |
| batch_size, | |
| tracking_window_size, | |
| minimum_patch_size, | |
| num_iter, | |
| guide_weight, | |
| initialize, | |
| progress = None, | |
| ): | |
| # input | |
| frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path) | |
| if len(message) > 0: | |
| print(message) | |
| # output | |
| if output_path == "": | |
| output_path = os.path.join(keyframes_path, "output") | |
| os.makedirs(output_path, exist_ok=True) | |
| print("No valid output_path. Your video will be saved here:", output_path) | |
| elif not os.path.exists(output_path): | |
| os.makedirs(output_path, exist_ok=True) | |
| print("Your video will be saved here:", output_path) | |
| output_frames_path = os.path.join(output_path, "frames") | |
| output_video_path = os.path.join(output_path, "video.mp4") | |
| os.makedirs(output_frames_path, exist_ok=True) | |
| # process | |
| ebsynth_config = { | |
| "minimum_patch_size": minimum_patch_size, | |
| "threads_per_block": 8, | |
| "num_iter": num_iter, | |
| "gpu_id": 0, | |
| "guide_weight": guide_weight, | |
| "initialize": initialize, | |
| "tracking_window_size": tracking_window_size | |
| } | |
| if len(index_style)==1: | |
| InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) | |
| else: | |
| InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) | |
| try: | |
| fps = int(fps) | |
| except: | |
| fps = 30 | |
| print("Fps:", fps) | |
| print("Saving video...") | |
| video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps) | |
| print("Success!") | |
| print("Your frames are here:", output_frames_path) | |
| print("Your video is here:", video_path) | |
| return output_path, fps, video_path | |
| def on_ui_tabs(): | |
| with gr.Blocks(analytics_enabled=False) as ui_component: | |
| with gr.Tab("Blend"): | |
| gr.Markdown(""" | |
| # Blend | |
| Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tab("Guide video"): | |
| video_guide = gr.Video(label="Guide video") | |
| with gr.Tab("Guide video (images format)"): | |
| video_guide_folder = gr.Textbox(label="Guide video (images format)", value="") | |
| with gr.Column(): | |
| with gr.Tab("Style video"): | |
| video_style = gr.Video(label="Style video") | |
| with gr.Tab("Style video (images format)"): | |
| video_style_folder = gr.Textbox(label="Style video (images format)", value="") | |
| with gr.Column(): | |
| output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video") | |
| fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") | |
| video_output = gr.Video(label="Output video", interactive=False, show_share_button=True) | |
| btn = gr.Button(value="Blend") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("# Settings") | |
| mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True) | |
| window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True) | |
| batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) | |
| tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True) | |
| gr.Markdown("## Advanced Settings") | |
| minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True) | |
| num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) | |
| guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) | |
| initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| # Reference | |
| * Output directory: the directory to save the video. | |
| * Inference mode | |
| |Mode|Time|Memory|Quality|Frame by frame output|Description| | |
| |-|-|-|-|-|-| | |
| |Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.| | |
| |Balanced|■■|■|■■|Yes|Blend the frames naively.| | |
| |Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.| | |
| * Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy. | |
| * Batch size: a larger batch size makes the program faster but requires more VRAM. | |
| * Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. | |
| * Advanced settings | |
| * Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5) | |
| * Number of iterations: the number of iterations of patch matching. (Default: 5) | |
| * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) | |
| * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) | |
| """) | |
| btn.click( | |
| smooth_video, | |
| inputs=[ | |
| video_guide, | |
| video_guide_folder, | |
| video_style, | |
| video_style_folder, | |
| mode, | |
| window_size, | |
| batch_size, | |
| tracking_window_size, | |
| output_path, | |
| fps, | |
| minimum_patch_size, | |
| num_iter, | |
| guide_weight, | |
| initialize | |
| ], | |
| outputs=[output_path, fps, video_output] | |
| ) | |
| with gr.Tab("Interpolate"): | |
| gr.Markdown(""" | |
| # Interpolate | |
| Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="") | |
| with gr.Column(): | |
| rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="") | |
| with gr.Row(): | |
| detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False) | |
| video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) | |
| rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) | |
| with gr.Column(): | |
| output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes") | |
| fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") | |
| video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True) | |
| btn_ = gr.Button(value="Interpolate") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("# Settings") | |
| batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) | |
| tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True) | |
| gr.Markdown("## Advanced Settings") | |
| minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True) | |
| num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) | |
| guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) | |
| initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) | |
| with gr.Column(): | |
| gr.Markdown(""" | |
| # Reference | |
| * Output directory: the directory to save the video. | |
| * Batch size: a larger batch size makes the program faster but requires more VRAM. | |
| * Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. | |
| * Advanced settings | |
| * Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)** | |
| * Number of iterations: the number of iterations of patch matching. (Default: 5) | |
| * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) | |
| * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) | |
| """) | |
| btn_.click( | |
| interpolate_video, | |
| inputs=[ | |
| video_guide_folder_, | |
| rendered_keyframes_, | |
| output_path_, | |
| fps_, | |
| batch_size_, | |
| tracking_window_size_, | |
| minimum_patch_size_, | |
| num_iter_, | |
| guide_weight_, | |
| initialize_, | |
| ], | |
| outputs=[output_path_, fps_, video_output_] | |
| ) | |
| return [(ui_component, "FastBlend", "FastBlend_ui")] | |