Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import os | |
| from streamlit_chat import message | |
| import numpy as np | |
| import pandas as pd | |
| from io import StringIO | |
| import PyPDF2 | |
| from tqdm import tqdm | |
| import math | |
| # import json | |
| # st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python") | |
| # from datasets import load_dataset | |
| # dataset = load_dataset("wikipedia", "20220301.en", split="train[240000:250000]") | |
| # wikidata = [] | |
| # for record in dataset: | |
| # wikidata.append(record["text"]) | |
| # wikidata = list(set(wikidata)) | |
| # # print("\n".join(wikidata[:5])) | |
| # # print(len(wikidata)) | |
| from sentence_transformers import SentenceTransformer | |
| import torch | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| if device != 'cuda': | |
| st.markdown(f"you are using {device}. This is much slower than using " | |
| "a CUDA-enabled GPU. If on colab you can change this by " | |
| "clicking Runtime > change runtime type > GPU.") | |
| model = SentenceTransformer("all-MiniLM-L6-v2", device=device) | |
| st.divider() | |
| # Creating a Index(Pinecone Vector Database) | |
| import os | |
| # import pinecone | |
| from pinecone.grpc import PineconeGRPC | |
| PINECONE_API_KEY=os.getenv("PINECONE_API_KEY") | |
| PINECONE_ENV=os.getenv("PINECONE_ENV") | |
| PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT") | |
| # pc = PineconeGRPC( api_key=os.environ.get("PINECONE_API_KEY") ) # Now do stuff if 'my_index' not in pc.list_indexes().names(): pc.create_index( name='my_index', dimension=1536, metric='euclidean', spec=ServerlessSpec( cloud='aws', region='us-west-2' ) ) | |
| def connect_pinecone(): | |
| pinecone = PineconeGRPC(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) | |
| # st.code(pinecone) | |
| # st.divider() | |
| # st.text(pinecone.list_indexes().names()) | |
| # st.divider() | |
| # st.text(f"Succesfully connected to the pinecone") | |
| return pinecone | |
| def get_pinecone_semantic_index(pinecone): | |
| index_name = "sematic-search" | |
| # only create if it deosnot exists | |
| if index_name not in pinecone.list_indexes().names(): | |
| pinecone.create_index( | |
| name=index_name, | |
| description="Semantic search", | |
| dimension=model.get_sentence_embedding_dimension(), | |
| metric="cosine", | |
| spec=ServerlessSpec( cloud='gcp', region='us-central1' ) | |
| ) | |
| # now connect to index | |
| index = pinecone.Index(index_name) | |
| # st.text(f"Succesfully connected to the pinecone index") | |
| return index | |
| def chat_actions(): | |
| pinecone = connect_pinecone() | |
| index = get_pinecone_semantic_index(pinecone) | |
| st.session_state["chat_history"].append( | |
| {"role": "user", "content": st.session_state["chat_input"]}, | |
| ) | |
| query_embedding = model.encode(st.session_state["chat_input"]) | |
| # create the query vector | |
| query_vector = query_embedding.tolist() | |
| # now query vector database | |
| result = index.query(query_vector, top_k=5, include_metadata=True) # xc is a list of tuples | |
| # Create a list of lists | |
| data = [] | |
| i = 0 | |
| for res in result['matches']: | |
| i = i + 1 | |
| data.append([f"{i}⭐", res['score'], res['metadata']['text']]) | |
| # Create a DataFrame from the list of lists | |
| resdf = pd.DataFrame(data, columns=['TopRank', 'Score', 'Text']) | |
| with st.sidebar: | |
| st.markdown("*:red[semantic search results]* with **:green[Retrieval Augmented Generation]** ***(RAG)***.") | |
| st.dataframe(resdf) | |
| for res in result['matches']: | |
| st.session_state["chat_history"].append( | |
| { | |
| "role": "assistant", | |
| "content": f"{res['metadata']['text']}", | |
| }, # This can be replaced with your chat response logic | |
| ) | |
| break; | |
| if "chat_history" not in st.session_state: | |
| st.session_state["chat_history"] = [] | |
| st.chat_input("show me the contents of ML paper published on xxx with article no. xx?", on_submit=chat_actions, key="chat_input") | |
| for i in st.session_state["chat_history"]: | |
| with st.chat_message(name=i["role"]): | |
| st.write(i["content"]) | |
| ### Creating a Index(Pinecone Vector Database) | |
| # %%writefile .env | |
| # PINECONE_API_KEY=os.getenv("PINECONE_API_KEY") | |
| # PINECONE_ENV=os.getenv("PINECONE_ENV") | |
| # PINECONE_ENVIRONMENT=os.getenv("PINECONE_ENVIRONMENT") | |
| # import os | |
| # import pinecone | |
| # from pinecone import Index, GRPCIndex | |
| # pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENV) | |
| # st.text(pinecone) | |
| def print_out(pages): | |
| for i in range(len(pages)): | |
| text = pages[i].extract_text().strip() | |
| st.write(f"Page {i} : {text}") | |
| def combine_text(pages): | |
| concatenates_text = "" | |
| for page in tqdm(pages): | |
| text = page.extract_text().strip() | |
| concatenates_text += text | |
| bytesize = concatenates_text.encode("utf-8") | |
| p = math.pow(1024, 2) | |
| mbsize = round(len(bytesize) / p, 2) | |
| st.write(f"There are {len(concatenates_text)} characters in the pdf with {mbsize}MB size") | |
| def create_embeddings(): | |
| # Get the uploaded file | |
| uploaded_file = st.session_state["uploaded_file"] | |
| # Read the contents of the file | |
| reader = PyPDF2.PdfReader(uploaded_file) | |
| pages = reader.pages | |
| print_out(pages) | |
| combine_text(pages) | |
| st.write("created_embeddings") | |
| # Display the contents of the file | |
| # st.write(file_contents) | |
| # def promt_engineer(text): | |
| # promt_template = """ | |
| # write a concise summary of the following text delimited by triple backquotes. | |
| # return your response in bullet points which convers the key points of the text. | |
| # ```{text}``` | |
| # BULLET POINT SUMMARY: | |
| # """ | |
| with st.sidebar: | |
| st.markdown(""" | |
| ***Follow this steps*** | |
| - upload pdf file to train the model on your own docs | |
| - wait see success message on train completion | |
| - Takes couple of mins after upload the pdf | |
| - Now Chat with model to get the summarized info or Generative reponse | |
| """) | |
| uploaded_files = st.file_uploader('Choose your .pdf file', type="pdf", accept_multiple_files=True, key="uploaded_file", on_change=create_embeddings) | |
| # for uploaded_file in uploaded_files: | |
| # To read file as bytes: | |
| # bytes_data = uploaded_file.getvalue() | |
| # st.write(bytes_data) | |
| # To convert to a string based IO: | |
| # stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) | |
| # st.write(stringio) | |
| # To read file as string: | |
| # string_data = stringio.read() | |
| # st.write(string_data) | |
| # Can be used wherever a "file-like" object is accepted: | |
| # dataframe = pd.read_csv(uploaded_file) | |
| # st.write(dataframe) | |
| # reader = PyPDF2.PdfReader(uploaded_file) | |
| # pages = reader.pages | |
| # print_out(pages) | |
| # combine_text(pages) | |
| # promt_engineer(text) | |