Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -88,7 +88,7 @@ def get_pinecone_semantic_index(pinecone):
|
|
| 88 |
|
| 89 |
|
| 90 |
def prompt_engineer(text, longtext, query):
|
| 91 |
-
|
| 92 |
write a concise summary of the following text delimited by triple backquotes.
|
| 93 |
return your response in bullet points which convers the key points of the text.
|
| 94 |
|
|
@@ -105,37 +105,39 @@ def prompt_engineer(text, longtext, query):
|
|
| 105 |
# Generate the summary
|
| 106 |
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
| 107 |
|
| 108 |
-
try:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
except Exception as e:
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 117 |
-
from langchain.chains.llm import LLMChain
|
| 118 |
-
from langchain_core.prompts import ChatPromptTemplate
|
| 119 |
-
from langchain_core.documents import Document
|
| 120 |
-
|
| 121 |
-
docs = Document(page_content=longtext, metadata={"source": "pinecone"})
|
| 122 |
-
st.write(docs)
|
| 123 |
-
# Define prompt
|
| 124 |
-
prompt = ChatPromptTemplate.from_messages(
|
| 125 |
-
|
| 126 |
-
)
|
| 127 |
|
| 128 |
-
# Instantiate chain
|
| 129 |
-
chain = create_stuff_documents_chain(sllm, prompt)
|
| 130 |
|
| 131 |
-
# Invoke chain
|
| 132 |
-
summary = chain.invoke({"context": [docs]})
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
with st.sidebar:
|
| 135 |
st.divider()
|
| 136 |
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
|
| 137 |
-
|
| 138 |
-
st.divider()
|
| 139 |
|
| 140 |
GENERATION_PROMPT_TEMPLATE = """
|
| 141 |
Instructions:
|
|
@@ -162,6 +164,9 @@ def prompt_engineer(text, longtext, query):
|
|
| 162 |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "task":"text-generation"}
|
| 163 |
)
|
| 164 |
st.write("GEN llm connection started..")
|
|
|
|
|
|
|
|
|
|
| 165 |
response_text = llm.invoke(prompt)
|
| 166 |
escaped_query = re.escape(query)
|
| 167 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|
|
|
|
| 88 |
|
| 89 |
|
| 90 |
def prompt_engineer(text, longtext, query):
|
| 91 |
+
summary_prompt_inst = """
|
| 92 |
write a concise summary of the following text delimited by triple backquotes.
|
| 93 |
return your response in bullet points which convers the key points of the text.
|
| 94 |
|
|
|
|
| 105 |
# Generate the summary
|
| 106 |
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
| 107 |
|
| 108 |
+
# try:
|
| 109 |
+
# sllm = HuggingFaceHub(
|
| 110 |
+
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0.1, "max_new_tokens": 256, "task":"summarization"}
|
| 111 |
+
# )
|
| 112 |
+
# st.write("Summary Chat llm connection started..")
|
| 113 |
+
# except Exception as e:
|
| 114 |
+
# st.error(f"Error invoke: {e}")
|
| 115 |
+
|
| 116 |
+
# from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 117 |
+
# from langchain.chains.llm import LLMChain
|
| 118 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
| 119 |
+
# from langchain_core.documents import Document
|
| 120 |
+
|
| 121 |
+
# docs = Document(page_content=longtext, metadata={"source": "pinecone"})
|
| 122 |
+
# st.write(docs)
|
| 123 |
+
# # Define prompt
|
| 124 |
+
# prompt = ChatPromptTemplate.from_messages(
|
| 125 |
+
# [("system", summary_prompt_template)]
|
| 126 |
+
# )
|
| 127 |
|
| 128 |
+
# # Instantiate chain
|
| 129 |
+
# chain = create_stuff_documents_chain(sllm, prompt)
|
| 130 |
|
| 131 |
+
# # Invoke chain
|
| 132 |
+
# summary = chain.invoke({"context": [docs]})
|
| 133 |
+
|
| 134 |
+
summary_prompt_template = ChatPromptTemplate.from_template(summary_prompt_inst)
|
| 135 |
+
summary_prompt = summary_prompt_template.format(context=longtext, question="generate summary of text?")
|
| 136 |
|
| 137 |
with st.sidebar:
|
| 138 |
st.divider()
|
| 139 |
st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
|
| 140 |
+
|
|
|
|
| 141 |
|
| 142 |
GENERATION_PROMPT_TEMPLATE = """
|
| 143 |
Instructions:
|
|
|
|
| 164 |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "task":"text-generation"}
|
| 165 |
)
|
| 166 |
st.write("GEN llm connection started..")
|
| 167 |
+
summary = llm.invoke(summary_prompt)
|
| 168 |
+
st.write(summary)
|
| 169 |
+
st.divider()
|
| 170 |
response_text = llm.invoke(prompt)
|
| 171 |
escaped_query = re.escape(query)
|
| 172 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|