Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,9 @@ import math
|
|
| 10 |
from transformers import pipeline
|
| 11 |
from langchain.prompts import ChatPromptTemplate
|
| 12 |
from langchain_community.llms import HuggingFaceHub
|
|
|
|
| 13 |
import re
|
|
|
|
| 14 |
# import json
|
| 15 |
|
| 16 |
# st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
|
|
@@ -95,13 +97,36 @@ def prompt_engineer(text, longtext, query):
|
|
| 95 |
BULLET POINT SUMMARY:
|
| 96 |
"""
|
| 97 |
# Load the summarization pipeline with the specified model
|
| 98 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 99 |
|
| 100 |
# Generate the prompt
|
| 101 |
-
prompt = summary_prompt_template.format(text=text)
|
| 102 |
|
| 103 |
# Generate the summary
|
| 104 |
-
summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
with st.sidebar:
|
| 107 |
st.divider()
|
|
@@ -130,9 +155,9 @@ def prompt_engineer(text, longtext, query):
|
|
| 130 |
result = ""
|
| 131 |
|
| 132 |
try:
|
| 133 |
-
llm = HuggingFaceHub(
|
| 134 |
-
|
| 135 |
-
)
|
| 136 |
response_text = llm.invoke(prompt)
|
| 137 |
escaped_query = re.escape(query)
|
| 138 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|
|
|
|
| 10 |
from transformers import pipeline
|
| 11 |
from langchain.prompts import ChatPromptTemplate
|
| 12 |
from langchain_community.llms import HuggingFaceHub
|
| 13 |
+
from langchain.chains.summarize import load_summarize_chain
|
| 14 |
import re
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
# import json
|
| 17 |
|
| 18 |
# st.config(PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION="python")
|
|
|
|
| 97 |
BULLET POINT SUMMARY:
|
| 98 |
"""
|
| 99 |
# Load the summarization pipeline with the specified model
|
| 100 |
+
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 101 |
|
| 102 |
# Generate the prompt
|
| 103 |
+
# prompt = summary_prompt_template.format(text=text)
|
| 104 |
|
| 105 |
# Generate the summary
|
| 106 |
+
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
llm = HuggingFaceHub(
|
| 110 |
+
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "max_new_tokens": 256, "task":"text-generation"}
|
| 111 |
+
)
|
| 112 |
+
st.write("llm connection started..")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"Error invoke: {e}")
|
| 115 |
+
|
| 116 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 117 |
+
from langchain.chains.llm import LLMChain
|
| 118 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 119 |
+
|
| 120 |
+
# Define prompt
|
| 121 |
+
prompt = ChatPromptTemplate.from_messages(
|
| 122 |
+
[("system", summary_prompt_template)]
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Instantiate chain
|
| 126 |
+
chain = create_stuff_documents_chain(llm, prompt)
|
| 127 |
+
|
| 128 |
+
# Invoke chain
|
| 129 |
+
summary = chain.invoke({"text": longtext})
|
| 130 |
|
| 131 |
with st.sidebar:
|
| 132 |
st.divider()
|
|
|
|
| 155 |
result = ""
|
| 156 |
|
| 157 |
try:
|
| 158 |
+
# llm = HuggingFaceHub(
|
| 159 |
+
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", model_kwargs={"temperature": 0, "max_new_tokens": 256, "task":"text-generation"}
|
| 160 |
+
# )
|
| 161 |
response_text = llm.invoke(prompt)
|
| 162 |
escaped_query = re.escape(query)
|
| 163 |
result = re.split(f'Answer the question based on the above context: {escaped_query}\n',response_text)[-1]
|