Upload evaluation_example.ipynb
Browse files- evaluation_example.ipynb +316 -0
evaluation_example.ipynb
ADDED
|
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from tqdm.auto import tqdm\n",
|
| 10 |
+
"import pandas as pd\n",
|
| 11 |
+
"import time\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"from langchain.document_loaders import PyMuPDFLoader\n",
|
| 14 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"pd.set_option(\"display.max_colwidth\", None)\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"# Set ChatMistralAI API KEY\n",
|
| 19 |
+
"# e.g., export MISTRAL_API_KEY==your_api_key_here\n",
|
| 20 |
+
"# or save apy key in .env file\n",
|
| 21 |
+
"from dotenv import load_dotenv\n",
|
| 22 |
+
"load_dotenv()"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": null,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"# Load pdf file\n",
|
| 32 |
+
"filepath = \"data/documents/Brandt et al_2024_Kadi_info_page.pdf\"\n",
|
| 33 |
+
"loader_module = PyMuPDFLoader\n",
|
| 34 |
+
"loader = loader_module(filepath)\n",
|
| 35 |
+
"document = loader.load()"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"# Split docs into chunks\n",
|
| 45 |
+
"text_splitter = RecursiveCharacterTextSplitter(\n",
|
| 46 |
+
" chunk_size=2000,\n",
|
| 47 |
+
" chunk_overlap=200,\n",
|
| 48 |
+
" add_start_index=True,\n",
|
| 49 |
+
" separators=[\"\\n\\n\", \"\\n\", \".\", \" \", \"\"],\n",
|
| 50 |
+
")\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"docs_processed = []\n",
|
| 53 |
+
"for doc in document:\n",
|
| 54 |
+
" docs_processed += text_splitter.split_documents([doc])\n",
|
| 55 |
+
"\n"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"# Create LLM, here we use MistralAI\n",
|
| 65 |
+
"from langchain_mistralai.chat_models import ChatMistralAI\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"llm = ChatMistralAI(\n",
|
| 68 |
+
" model=\"mistral-large-latest\"\n",
|
| 69 |
+
")\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"llm.invoke(\"hello\") # test llm"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": null,
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"QA_generation_prompt = \"\"\"\n",
|
| 81 |
+
"Your task is to write a factoid question and an answer given a context.\n",
|
| 82 |
+
"Your factoid question should be answerable with a specific, concise piece of factual information from the context.\n",
|
| 83 |
+
"Your factoid question should be formulated in the same style as questions users could ask in a search engine. Users are usually scientific researchers in the field of materials science.\n",
|
| 84 |
+
"This means that your factoid question MUST NOT mention something like \"according to the passage\" or \"context\".\n",
|
| 85 |
+
"Please ask the specific question instead of the general question, like 'What is the key information in the given paragraph?'.\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"Provide your answer as follows:\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"Output:::\n",
|
| 90 |
+
"Factoid question: (your factoid question)\n",
|
| 91 |
+
"Answer: (your answer to the factoid question)\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"Now here is the context.\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"Context: {context}\\n\n",
|
| 96 |
+
"Output:::\"\"\"\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"# Or\n",
|
| 99 |
+
"# Ref: https://mlflow.org/docs/latest/llms/rag/notebooks/question-generation-retrieval-evaluation.html\n",
|
| 100 |
+
"# QA_generation_prompt = \"\"\"\n",
|
| 101 |
+
"# Please generate a question asking for the key information in the given paragraph.\n",
|
| 102 |
+
"# Also answer the questions using the information in the given paragraph.\n",
|
| 103 |
+
"# Please ask the specific question instead of the general question, like\n",
|
| 104 |
+
"# 'What is the key information in the given paragraph?'.\n",
|
| 105 |
+
"# Please generate the answer using as much information as possible.\n",
|
| 106 |
+
"# If you are unable to answer it, please generate the answer as 'I don't know.'\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"# Provide your answer as follows:\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"# Output:::\n",
|
| 111 |
+
"# Factoid question: (your factoid question)\n",
|
| 112 |
+
"# Answer: (your answer to the factoid question)\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"# Now here is the context.\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"# Context: {context}\\n\n",
|
| 117 |
+
"# Output:::\"\"\""
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"# Generate QA pairs\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"import random\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"N_GENERATIONS = 5 # generate only 5 QA couples here for cost and time considerations\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"print(f\"Generating {N_GENERATIONS} QA couples...\")\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"outputs = []\n",
|
| 135 |
+
"for sampled_context in tqdm(random.choices(docs_processed, k=N_GENERATIONS)):\n",
|
| 136 |
+
" # Generate QA pairs\n",
|
| 137 |
+
" output_QA_couple = llm.invoke(QA_generation_prompt.format(context=sampled_context.page_content)).content\n",
|
| 138 |
+
" try:\n",
|
| 139 |
+
" question = output_QA_couple.split(\"Factoid question: \")[-1].split(\"Answer: \")[0]\n",
|
| 140 |
+
" answer = output_QA_couple.split(\"Answer: \")[-1]\n",
|
| 141 |
+
" assert len(answer) < 500, \"Answer is too long\"\n",
|
| 142 |
+
" outputs.append(\n",
|
| 143 |
+
" {\n",
|
| 144 |
+
" \"context\": sampled_context.page_content,\n",
|
| 145 |
+
" \"question\": question,\n",
|
| 146 |
+
" \"answer\": answer,\n",
|
| 147 |
+
" \"source_doc\": sampled_context.metadata[\"source\"],\n",
|
| 148 |
+
" }\n",
|
| 149 |
+
" )\n",
|
| 150 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
| 151 |
+
" except:\n",
|
| 152 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
| 153 |
+
" continue"
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"cell_type": "code",
|
| 158 |
+
"execution_count": null,
|
| 159 |
+
"metadata": {},
|
| 160 |
+
"outputs": [],
|
| 161 |
+
"source": [
|
| 162 |
+
"reference_df = pd.DataFrame(outputs)\n",
|
| 163 |
+
"display(reference_df.head(1))"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"outputs": [],
|
| 171 |
+
"source": [
|
| 172 |
+
"# build a simple rag chain\n",
|
| 173 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
| 174 |
+
"from langchain.vectorstores import FAISS\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"chunk_size=1024\n",
|
| 177 |
+
"chunk_overlap=256\n",
|
| 178 |
+
"splitter = RecursiveCharacterTextSplitter(\n",
|
| 179 |
+
" separators=[\"\\n\\n\", \"\\n\"], chunk_size=chunk_size, chunk_overlap=chunk_overlap\n",
|
| 180 |
+
")\n",
|
| 181 |
+
"doc_chunks = splitter.split_documents(document)\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"all-mpnet-base-v2\")\n",
|
| 184 |
+
"\n",
|
| 185 |
+
"vectorstore = FAISS.from_documents(doc_chunks, embedding=embeddings)\n",
|
| 186 |
+
"\n",
|
| 187 |
+
"retriever = vectorstore.as_retriever()\n",
|
| 188 |
+
"\n",
|
| 189 |
+
"from langchain.chains import RetrievalQA\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"rag_chain = RetrievalQA.from_llm(\n",
|
| 192 |
+
" llm=llm, retriever=retriever, return_source_documents=True\n",
|
| 193 |
+
" )"
|
| 194 |
+
]
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"execution_count": null,
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"# Prepare evaluation data set\n",
|
| 203 |
+
"def prepare_eval_dataset(reference_df, rag_chain):\n",
|
| 204 |
+
" \n",
|
| 205 |
+
" print(\"now loading evaluation dataset...\")\n",
|
| 206 |
+
" from datasets import Dataset\n",
|
| 207 |
+
" # Read reference file\n",
|
| 208 |
+
" df = reference_df\n",
|
| 209 |
+
"\n",
|
| 210 |
+
" # Add anwsers from rag_chain\n",
|
| 211 |
+
" questions = df[\"question\"].values\n",
|
| 212 |
+
" ground_truth = []\n",
|
| 213 |
+
" for a in df[\"answer\"].values:\n",
|
| 214 |
+
" ground_truth.append(a) # [a] for older version of ragas\n",
|
| 215 |
+
" answers = []\n",
|
| 216 |
+
" contexts = []\n",
|
| 217 |
+
"\n",
|
| 218 |
+
" # Get anwswers from rag_chain\n",
|
| 219 |
+
" print(\"now getting anwsers from QA llm...\")\n",
|
| 220 |
+
" for query in questions:\n",
|
| 221 |
+
" results = rag_chain({\"query\": query})\n",
|
| 222 |
+
" answers.append(results[\"result\"])\n",
|
| 223 |
+
" contexts.append([docs.page_content for docs in results[\"source_documents\"]])\n",
|
| 224 |
+
" time.sleep(3) # sleep for llm rate limitation\n",
|
| 225 |
+
"\n",
|
| 226 |
+
" # To dict\n",
|
| 227 |
+
" data = {\n",
|
| 228 |
+
" \"question\": questions,\n",
|
| 229 |
+
" \"answer\": answers,\n",
|
| 230 |
+
" \"contexts\": contexts,\n",
|
| 231 |
+
" \"ground_truth\": ground_truth,\n",
|
| 232 |
+
" }\n",
|
| 233 |
+
"\n",
|
| 234 |
+
" # Convert dict to dataset\n",
|
| 235 |
+
" dataset = Dataset.from_dict(data)\n",
|
| 236 |
+
" return dataset\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"eval_dataset = prepare_eval_dataset(reference_df, rag_chain)\n",
|
| 239 |
+
"eval_dataset\n"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": null,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"# Ragas evaluation\n",
|
| 249 |
+
"from ragas.llms import LangchainLLMWrapper\n",
|
| 250 |
+
"eval_llm = LangchainLLMWrapper(llm)\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"from ragas import evaluate\n",
|
| 253 |
+
"from ragas.metrics import (\n",
|
| 254 |
+
" faithfulness,\n",
|
| 255 |
+
" answer_relevancy,\n",
|
| 256 |
+
" context_recall,\n",
|
| 257 |
+
" context_precision,\n",
|
| 258 |
+
" answer_correctness,\n",
|
| 259 |
+
")\n",
|
| 260 |
+
"result_eval_df = evaluate(\n",
|
| 261 |
+
" dataset=eval_dataset,\n",
|
| 262 |
+
" metrics=[\n",
|
| 263 |
+
" context_precision,\n",
|
| 264 |
+
" context_recall,\n",
|
| 265 |
+
" faithfulness,\n",
|
| 266 |
+
" answer_relevancy,\n",
|
| 267 |
+
" answer_correctness,\n",
|
| 268 |
+
" ],\n",
|
| 269 |
+
" llm=eval_llm, embeddings=embeddings,\n",
|
| 270 |
+
" raise_exceptions=False,\n",
|
| 271 |
+
")\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"result_eval_df = result_eval_df.to_pandas() # can take a while"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "code",
|
| 278 |
+
"execution_count": null,
|
| 279 |
+
"metadata": {},
|
| 280 |
+
"outputs": [],
|
| 281 |
+
"source": [
|
| 282 |
+
"# Check results\n",
|
| 283 |
+
"result_eval_df\n",
|
| 284 |
+
"# if you get NaN in results, check \"Frequently Asked Questions\" in Ragas for help"
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"outputs": [],
|
| 292 |
+
"source": []
|
| 293 |
+
}
|
| 294 |
+
],
|
| 295 |
+
"metadata": {
|
| 296 |
+
"kernelspec": {
|
| 297 |
+
"display_name": "Python 3",
|
| 298 |
+
"language": "python",
|
| 299 |
+
"name": "python3"
|
| 300 |
+
},
|
| 301 |
+
"language_info": {
|
| 302 |
+
"codemirror_mode": {
|
| 303 |
+
"name": "ipython",
|
| 304 |
+
"version": 3
|
| 305 |
+
},
|
| 306 |
+
"file_extension": ".py",
|
| 307 |
+
"mimetype": "text/x-python",
|
| 308 |
+
"name": "python",
|
| 309 |
+
"nbconvert_exporter": "python",
|
| 310 |
+
"pygments_lexer": "ipython3",
|
| 311 |
+
"version": "3.12.1"
|
| 312 |
+
}
|
| 313 |
+
},
|
| 314 |
+
"nbformat": 4,
|
| 315 |
+
"nbformat_minor": 2
|
| 316 |
+
}
|