update
Browse files- app.py +80 -30
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +9 -0
- src/results/models_2024-11-08-08:36:00.464224.json +0 -0
app.py
CHANGED
|
@@ -100,7 +100,8 @@ def init_leaderboard(dataframe):
|
|
| 100 |
)
|
| 101 |
|
| 102 |
# model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
|
| 103 |
-
model_result_path = "./src/results/models_2024-10-24-08:08:59.127307.json"
|
|
|
|
| 104 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
| 105 |
|
| 106 |
|
|
@@ -192,7 +193,8 @@ with demo:
|
|
| 192 |
|
| 193 |
TEXT = (
|
| 194 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 195 |
-
'<b>Total #models: 57 (Last updated: 2024-10-21)</b>'
|
|
|
|
| 196 |
'</p>'
|
| 197 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 198 |
'This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks or scores.'
|
|
@@ -218,6 +220,9 @@ with demo:
|
|
| 218 |
AutoEvalColumn.rank_reason_logical.name,
|
| 219 |
AutoEvalColumn.rank_reason_social.name,
|
| 220 |
AutoEvalColumn.rank_chemistry.name,
|
|
|
|
|
|
|
|
|
|
| 221 |
AutoEvalColumn.rank_overall.name,
|
| 222 |
# AutoEvalColumn.rank_cpp.name,
|
| 223 |
],
|
|
@@ -242,6 +247,9 @@ with demo:
|
|
| 242 |
AutoEvalColumn.score_reason_logical.name,
|
| 243 |
AutoEvalColumn.score_reason_social.name,
|
| 244 |
AutoEvalColumn.score_chemistry.name,
|
|
|
|
|
|
|
|
|
|
| 245 |
AutoEvalColumn.score_overall.name,
|
| 246 |
# AutoEvalColumn.score_cpp.name,
|
| 247 |
|
|
@@ -278,11 +286,19 @@ with demo:
|
|
| 278 |
|
| 279 |
TEXT = (
|
| 280 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 281 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
'</p>'
|
| 283 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 284 |
-
'
|
| 285 |
-
'(Missing values are due to the slow or problemtic model responses to be fixed soom.)'
|
| 286 |
'</p>'
|
| 287 |
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 288 |
# 'We present '
|
|
@@ -534,18 +550,19 @@ with demo:
|
|
| 534 |
get_model_leaderboard_df(
|
| 535 |
model_result_path,
|
| 536 |
benchmark_cols=[
|
| 537 |
-
AutoEvalColumn.model.name,
|
| 538 |
-
|
| 539 |
-
AutoEvalColumn.
|
| 540 |
-
AutoEvalColumn.
|
| 541 |
-
AutoEvalColumn.
|
| 542 |
-
|
| 543 |
-
AutoEvalColumn.
|
| 544 |
],
|
| 545 |
-
rank_col=['sort_by_rank',
|
| 546 |
)
|
| 547 |
)
|
| 548 |
-
|
|
|
|
| 549 |
with gr.TabItem("⭐ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
|
| 550 |
leaderboard = overall_leaderboard(
|
| 551 |
get_model_leaderboard_df(
|
|
@@ -553,14 +570,15 @@ with demo:
|
|
| 553 |
benchmark_cols=[
|
| 554 |
AutoEvalColumn.model.name,
|
| 555 |
|
| 556 |
-
AutoEvalColumn.license.name,
|
| 557 |
-
AutoEvalColumn.organization.name,
|
| 558 |
-
AutoEvalColumn.knowledge_cutoff.name,
|
| 559 |
|
| 560 |
-
AutoEvalColumn.score_chemistry.name,
|
| 561 |
-
|
|
|
|
| 562 |
],
|
| 563 |
-
rank_col=['sort_by_score', 4,
|
| 564 |
)
|
| 565 |
)
|
| 566 |
|
|
@@ -583,18 +601,50 @@ with demo:
|
|
| 583 |
)
|
| 584 |
)
|
| 585 |
|
| 586 |
-
with gr.TabItem("⚛️ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"):
|
| 587 |
-
CURRENT_TEXT = """
|
| 588 |
-
# Coming soon!
|
| 589 |
-
"""
|
| 590 |
-
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
| 591 |
-
|
| 592 |
|
| 593 |
with gr.TabItem("🧬 Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"):
|
| 594 |
-
CURRENT_TEXT = """
|
| 595 |
-
# Coming soon!
|
| 596 |
-
"""
|
| 597 |
-
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 598 |
|
| 599 |
|
| 600 |
with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
# model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
|
| 103 |
+
# model_result_path = "./src/results/models_2024-10-24-08:08:59.127307.json"
|
| 104 |
+
model_result_path = "./src/results/models_2024-11-08-08:36:00.464224.json"
|
| 105 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
| 106 |
|
| 107 |
|
|
|
|
| 193 |
|
| 194 |
TEXT = (
|
| 195 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 196 |
+
# '<b>Total #models: 57 (Last updated: 2024-10-21)</b>'
|
| 197 |
+
'<b>Total #models: 62 (Last updated: 2024-11-08)</b>'
|
| 198 |
'</p>'
|
| 199 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 200 |
'This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks or scores.'
|
|
|
|
| 220 |
AutoEvalColumn.rank_reason_logical.name,
|
| 221 |
AutoEvalColumn.rank_reason_social.name,
|
| 222 |
AutoEvalColumn.rank_chemistry.name,
|
| 223 |
+
AutoEvalColumn.rank_biology.name,
|
| 224 |
+
AutoEvalColumn.rank_physics.name,
|
| 225 |
+
|
| 226 |
AutoEvalColumn.rank_overall.name,
|
| 227 |
# AutoEvalColumn.rank_cpp.name,
|
| 228 |
],
|
|
|
|
| 247 |
AutoEvalColumn.score_reason_logical.name,
|
| 248 |
AutoEvalColumn.score_reason_social.name,
|
| 249 |
AutoEvalColumn.score_chemistry.name,
|
| 250 |
+
AutoEvalColumn.score_biology.name,
|
| 251 |
+
AutoEvalColumn.score_physics.name,
|
| 252 |
+
|
| 253 |
AutoEvalColumn.score_overall.name,
|
| 254 |
# AutoEvalColumn.score_cpp.name,
|
| 255 |
|
|
|
|
| 286 |
|
| 287 |
TEXT = (
|
| 288 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 289 |
+
'Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. '
|
| 290 |
+
'To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. '
|
| 291 |
+
'We prioritize <b>recent math datasets</b> and focus on <b>college and beyond level</b> math questions. '
|
| 292 |
+
'The current datasets include</b>'
|
| 293 |
+
'<a href="https://arxiv.org/abs/2103.03874">MATH</a>, '
|
| 294 |
+
'<a href="htt ps://github.com/openai/prm800k/tree/main/prm800k/math_splits">MATH-500</a>, '
|
| 295 |
+
'<a href="https://omni-math.github.io/">Omni</a>, '
|
| 296 |
+
'<a href="https://arxiv.org/abs/1905.13319">MathQA</a>, '
|
| 297 |
+
'<a href="https://arxiv.org/abs/2405.12209">MathBench</a>, '
|
| 298 |
+
'<a href="https://arxiv.org/abs/2307.10635">SciBench</a>, and more! '
|
| 299 |
'</p>'
|
| 300 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 301 |
+
'We plan to include more math domains, such as calculus, number theory, and more in the future. '
|
|
|
|
| 302 |
'</p>'
|
| 303 |
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
| 304 |
# 'We present '
|
|
|
|
| 550 |
get_model_leaderboard_df(
|
| 551 |
model_result_path,
|
| 552 |
benchmark_cols=[
|
| 553 |
+
AutoEvalColumn.model.name,
|
| 554 |
+
# AutoEvalColumn.license.name,
|
| 555 |
+
# AutoEvalColumn.organization.name,
|
| 556 |
+
# AutoEvalColumn.knowledge_cutoff.name,
|
| 557 |
+
AutoEvalColumn.rank_chemistry.name,
|
| 558 |
+
AutoEvalColumn.rank_biology.name,
|
| 559 |
+
AutoEvalColumn.rank_physics.name,
|
| 560 |
],
|
| 561 |
+
rank_col=['sort_by_rank', 1, 4, 'Science'],
|
| 562 |
)
|
| 563 |
)
|
| 564 |
+
|
| 565 |
+
|
| 566 |
with gr.TabItem("⭐ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
|
| 567 |
leaderboard = overall_leaderboard(
|
| 568 |
get_model_leaderboard_df(
|
|
|
|
| 570 |
benchmark_cols=[
|
| 571 |
AutoEvalColumn.model.name,
|
| 572 |
|
| 573 |
+
# AutoEvalColumn.license.name,
|
| 574 |
+
# AutoEvalColumn.organization.name,
|
| 575 |
+
# AutoEvalColumn.knowledge_cutoff.name,
|
| 576 |
|
| 577 |
+
AutoEvalColumn.score_chemistry.name,
|
| 578 |
+
AutoEvalColumn.score_biology.name,
|
| 579 |
+
AutoEvalColumn.score_physics.name,
|
| 580 |
],
|
| 581 |
+
rank_col=['sort_by_score', 1, 4, 'Science'], # two numbers are index to select the columns to average and sort
|
| 582 |
)
|
| 583 |
)
|
| 584 |
|
|
|
|
| 601 |
)
|
| 602 |
)
|
| 603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
|
| 605 |
with gr.TabItem("🧬 Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"):
|
| 606 |
+
# CURRENT_TEXT = """
|
| 607 |
+
# # Coming soon!
|
| 608 |
+
# """
|
| 609 |
+
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
| 610 |
+
leaderboard = overall_leaderboard(
|
| 611 |
+
get_model_leaderboard_df(
|
| 612 |
+
model_result_path,
|
| 613 |
+
benchmark_cols=[
|
| 614 |
+
AutoEvalColumn.rank_biology.name,
|
| 615 |
+
AutoEvalColumn.model.name,
|
| 616 |
+
AutoEvalColumn.score_biology.name,
|
| 617 |
+
# AutoEvalColumn.sd_reason_social.name,
|
| 618 |
+
AutoEvalColumn.license.name,
|
| 619 |
+
AutoEvalColumn.organization.name,
|
| 620 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 621 |
+
],
|
| 622 |
+
rank_col=[AutoEvalColumn.rank_biology.name],
|
| 623 |
+
)
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
with gr.TabItem("⚛️ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"):
|
| 628 |
+
# CURRENT_TEXT = """
|
| 629 |
+
# # Coming soon!
|
| 630 |
+
# """
|
| 631 |
+
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
| 632 |
+
leaderboard = overall_leaderboard(
|
| 633 |
+
get_model_leaderboard_df(
|
| 634 |
+
model_result_path,
|
| 635 |
+
benchmark_cols=[
|
| 636 |
+
AutoEvalColumn.rank_physics.name,
|
| 637 |
+
AutoEvalColumn.model.name,
|
| 638 |
+
AutoEvalColumn.score_physics.name,
|
| 639 |
+
# AutoEvalColumn.sd_reason_social.name,
|
| 640 |
+
AutoEvalColumn.license.name,
|
| 641 |
+
AutoEvalColumn.organization.name,
|
| 642 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
| 643 |
+
],
|
| 644 |
+
rank_col=[AutoEvalColumn.rank_physics.name],
|
| 645 |
+
)
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
|
| 649 |
|
| 650 |
with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
|
src/display/utils.py
CHANGED
|
@@ -101,6 +101,7 @@ auto_eval_column_dict.append(["sd_biology", ColumnContent, field(default_factory
|
|
| 101 |
auto_eval_column_dict.append(["rank_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Biology)", "number", True))])
|
| 102 |
|
| 103 |
|
|
|
|
| 104 |
auto_eval_column_dict.append(["score_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Score (C++)", "number", True))])
|
| 105 |
auto_eval_column_dict.append(["sd_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (C++)", "number", True))])
|
| 106 |
auto_eval_column_dict.append(["rank_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (C++)", "number", True))])
|
|
|
|
| 101 |
auto_eval_column_dict.append(["rank_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Biology)", "number", True))])
|
| 102 |
|
| 103 |
|
| 104 |
+
|
| 105 |
auto_eval_column_dict.append(["score_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Score (C++)", "number", True))])
|
| 106 |
auto_eval_column_dict.append(["sd_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (C++)", "number", True))])
|
| 107 |
auto_eval_column_dict.append(["rank_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (C++)", "number", True))])
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -188,6 +188,15 @@ class ModelResult:
|
|
| 188 |
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
|
| 189 |
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
|
| 190 |
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
|
| 193 |
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
|
|
|
|
| 188 |
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
|
| 189 |
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
|
| 190 |
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
|
| 191 |
+
|
| 192 |
+
AutoEvalColumn.score_biology.name: self.results.get("Biology").get("Average Score", None) if self.results.get("Biology") else None,
|
| 193 |
+
AutoEvalColumn.sd_biology.name: self.results.get("Biology").get("Standard Deviation", None) if self.results.get("Biology") else None,
|
| 194 |
+
AutoEvalColumn.rank_biology.name: self.results.get("Biology").get("Rank", None) if self.results.get("Biology") else None,
|
| 195 |
+
|
| 196 |
+
AutoEvalColumn.score_physics.name: self.results.get("Physics").get("Average Score", None) if self.results.get("Physics") else None,
|
| 197 |
+
AutoEvalColumn.sd_physics.name: self.results.get("Physics").get("Standard Deviation", None) if self.results.get("Physics") else None,
|
| 198 |
+
AutoEvalColumn.rank_physics.name: self.results.get("Physics").get("Rank", None) if self.results.get("Physics") else None,
|
| 199 |
+
|
| 200 |
|
| 201 |
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
|
| 202 |
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
|
src/results/models_2024-11-08-08:36:00.464224.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|