Spaces:
Paused
Paused
rockeycoss
commited on
Commit
·
1e50ca9
1
Parent(s):
0ab1c76
stable1
Browse files- README.md +1 -1
- app.py +39 -35
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🖼️🖌️
|
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.31.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
-
|
| 2 |
import json
|
| 3 |
import webcolors
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
import os.path as osp
|
|
|
|
| 7 |
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
|
| 9 |
import torch
|
|
@@ -64,6 +65,10 @@ font = ImageFont.truetype("assets/Arial.ttf", 20)
|
|
| 64 |
|
| 65 |
device = "cuda"
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
def import_model_class_from_model_name_or_path(
|
| 68 |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder",
|
| 69 |
):
|
|
@@ -215,6 +220,18 @@ pipeline.scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
|
| 215 |
|
| 216 |
prompt_format = PromptFormat()
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
def get_pixels(
|
| 219 |
box_sketch_template,
|
| 220 |
evt: gr.SelectData
|
|
@@ -318,8 +335,6 @@ def exe_undo(
|
|
| 318 |
return box_sketch_template
|
| 319 |
|
| 320 |
def process_box():
|
| 321 |
-
global stack
|
| 322 |
-
global state
|
| 323 |
|
| 324 |
visibilities = []
|
| 325 |
for _ in range(MAX_TEXT_BOX + 1):
|
|
@@ -330,31 +345,19 @@ def process_box():
|
|
| 330 |
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
| 331 |
return [gr.update(visible=True), *visibilities]
|
| 332 |
|
| 333 |
-
@
|
|
|
|
| 334 |
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
| 335 |
-
print(conditions)
|
| 336 |
-
|
| 337 |
-
# 0 load model to cuda
|
| 338 |
-
global pipeline
|
| 339 |
-
if config.pretrained_vae_model_name_or_path is None:
|
| 340 |
-
vae.to(device, dtype=torch.float32)
|
| 341 |
-
else:
|
| 342 |
-
vae.to(device, dtype=inference_dtype)
|
| 343 |
-
text_encoder_one.to(device, dtype=inference_dtype)
|
| 344 |
-
text_encoder_two.to(device, dtype=inference_dtype)
|
| 345 |
-
byt5_model.to(device)
|
| 346 |
-
unet.to(device, dtype=inference_dtype)
|
| 347 |
-
pipeline = pipeline.to(device)
|
| 348 |
|
|
|
|
|
|
|
|
|
|
| 349 |
# 1. parse input
|
| 350 |
-
global state
|
| 351 |
-
global stack
|
| 352 |
-
|
| 353 |
prompts = []
|
| 354 |
colors = []
|
| 355 |
font_type = []
|
| 356 |
bboxes = []
|
| 357 |
-
num_boxes = len(
|
| 358 |
for i in range(num_boxes):
|
| 359 |
prompts.append(conditions[i])
|
| 360 |
colors.append(conditions[i + MAX_TEXT_BOX])
|
|
@@ -373,10 +376,10 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
| 373 |
raise gr.Error(f"Invalid style for text box {i + 1} !")
|
| 374 |
bboxes.append(
|
| 375 |
[
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
(
|
| 379 |
-
(
|
| 380 |
]
|
| 381 |
)
|
| 382 |
styles.append(
|
|
@@ -393,14 +396,11 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
| 393 |
bg_prompt += " Tags: " + bg_tags
|
| 394 |
text_prompt = prompt_format.format_prompt(prompts, styles)
|
| 395 |
|
| 396 |
-
print(bg_prompt)
|
| 397 |
-
print(text_prompt)
|
| 398 |
|
| 399 |
# 4. inference
|
| 400 |
-
|
| 401 |
-
generator = torch.Generator(device=device)
|
| 402 |
-
else:
|
| 403 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 404 |
with torch.cuda.amp.autocast():
|
| 405 |
image = pipeline(
|
| 406 |
prompt=bg_prompt,
|
|
@@ -411,6 +411,9 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
| 411 |
generator=generator,
|
| 412 |
text_attn_mask=None,
|
| 413 |
).images[0]
|
|
|
|
|
|
|
|
|
|
| 414 |
return image
|
| 415 |
|
| 416 |
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed):
|
|
@@ -534,10 +537,10 @@ def main():
|
|
| 534 |
choices=font_idx_list,
|
| 535 |
))
|
| 536 |
|
| 537 |
-
seed_ = gr.Slider(label="Seed", minimum
|
| 538 |
-
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True)
|
| 539 |
|
| 540 |
-
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row]
|
| 541 |
|
| 542 |
with gr.Column():
|
| 543 |
output_image = gr.Image(label="Output Image", interactive=False)
|
|
@@ -570,7 +573,7 @@ def main():
|
|
| 570 |
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne',
|
| 571 |
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels",
|
| 572 |
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]',
|
| 573 |
-
|
| 574 |
],
|
| 575 |
[
|
| 576 |
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.',
|
|
@@ -605,6 +608,7 @@ def main():
|
|
| 605 |
],
|
| 606 |
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts],
|
| 607 |
fn=process_example,
|
|
|
|
| 608 |
run_on_click=True,
|
| 609 |
label='Examples',
|
| 610 |
)
|
|
|
|
| 1 |
+
import gc
|
| 2 |
import json
|
| 3 |
import webcolors
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
| 6 |
import os.path as osp
|
| 7 |
+
from copy import deepcopy
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
|
| 10 |
import torch
|
|
|
|
| 65 |
|
| 66 |
device = "cuda"
|
| 67 |
|
| 68 |
+
def flush():
|
| 69 |
+
gc.collect()
|
| 70 |
+
torch.cuda.empty_cache()
|
| 71 |
+
|
| 72 |
def import_model_class_from_model_name_or_path(
|
| 73 |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder",
|
| 74 |
):
|
|
|
|
| 220 |
|
| 221 |
prompt_format = PromptFormat()
|
| 222 |
|
| 223 |
+
# move to gpu
|
| 224 |
+
if config.pretrained_vae_model_name_or_path is None:
|
| 225 |
+
vae = vae.to(device, dtype=torch.float32)
|
| 226 |
+
else:
|
| 227 |
+
vae = vae.to(device, dtype=inference_dtype)
|
| 228 |
+
text_encoder_one = text_encoder_one.to(device, dtype=inference_dtype)
|
| 229 |
+
text_encoder_two = text_encoder_two.to(device, dtype=inference_dtype)
|
| 230 |
+
byt5_model = byt5_model.to(device)
|
| 231 |
+
unet = unet.to(device, dtype=inference_dtype)
|
| 232 |
+
pipeline = pipeline.to(device)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
def get_pixels(
|
| 236 |
box_sketch_template,
|
| 237 |
evt: gr.SelectData
|
|
|
|
| 335 |
return box_sketch_template
|
| 336 |
|
| 337 |
def process_box():
|
|
|
|
|
|
|
| 338 |
|
| 339 |
visibilities = []
|
| 340 |
for _ in range(MAX_TEXT_BOX + 1):
|
|
|
|
| 345 |
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
| 346 |
return [gr.update(visible=True), *visibilities]
|
| 347 |
|
| 348 |
+
@torch.inference_mode()
|
| 349 |
+
@spaces.GPU(enable_queue=True)
|
| 350 |
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
+
stack_cp = deepcopy(stack)
|
| 353 |
+
print(f"conditions: {conditions}")
|
| 354 |
+
|
| 355 |
# 1. parse input
|
|
|
|
|
|
|
|
|
|
| 356 |
prompts = []
|
| 357 |
colors = []
|
| 358 |
font_type = []
|
| 359 |
bboxes = []
|
| 360 |
+
num_boxes = len(stack_cp) if len(stack_cp[-1]) == 4 else len(stack_cp) - 1
|
| 361 |
for i in range(num_boxes):
|
| 362 |
prompts.append(conditions[i])
|
| 363 |
colors.append(conditions[i + MAX_TEXT_BOX])
|
|
|
|
| 376 |
raise gr.Error(f"Invalid style for text box {i + 1} !")
|
| 377 |
bboxes.append(
|
| 378 |
[
|
| 379 |
+
stack_cp[i][0] / 1024,
|
| 380 |
+
stack_cp[i][1] / 1024,
|
| 381 |
+
(stack_cp[i][2] - stack_cp[i][0]) / 1024,
|
| 382 |
+
(stack_cp[i][3] - stack_cp[i][1]) / 1024,
|
| 383 |
]
|
| 384 |
)
|
| 385 |
styles.append(
|
|
|
|
| 396 |
bg_prompt += " Tags: " + bg_tags
|
| 397 |
text_prompt = prompt_format.format_prompt(prompts, styles)
|
| 398 |
|
| 399 |
+
print(f"bg_prompt: {bg_prompt}")
|
| 400 |
+
print(f"text_prompt: {text_prompt}")
|
| 401 |
|
| 402 |
# 4. inference
|
| 403 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
|
|
|
|
|
|
|
|
|
| 404 |
with torch.cuda.amp.autocast():
|
| 405 |
image = pipeline(
|
| 406 |
prompt=bg_prompt,
|
|
|
|
| 411 |
generator=generator,
|
| 412 |
text_attn_mask=None,
|
| 413 |
).images[0]
|
| 414 |
+
|
| 415 |
+
flush()
|
| 416 |
+
|
| 417 |
return image
|
| 418 |
|
| 419 |
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed):
|
|
|
|
| 537 |
choices=font_idx_list,
|
| 538 |
))
|
| 539 |
|
| 540 |
+
seed_ = gr.Slider(label="Seed", minimum=0, maximum=2147483647, value=42, step=1)
|
| 541 |
+
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True, variant='primary')
|
| 542 |
|
| 543 |
+
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row])
|
| 544 |
|
| 545 |
with gr.Column():
|
| 546 |
output_image = gr.Image(label="Output Image", interactive=False)
|
|
|
|
| 573 |
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne',
|
| 574 |
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels",
|
| 575 |
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]',
|
| 576 |
+
1,
|
| 577 |
],
|
| 578 |
[
|
| 579 |
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.',
|
|
|
|
| 608 |
],
|
| 609 |
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts],
|
| 610 |
fn=process_example,
|
| 611 |
+
cache_examples=False,
|
| 612 |
run_on_click=True,
|
| 613 |
label='Examples',
|
| 614 |
)
|
requirements.txt
CHANGED
|
@@ -7,4 +7,4 @@ torchvision==0.17.0
|
|
| 7 |
deepspeed
|
| 8 |
peft
|
| 9 |
webcolors
|
| 10 |
-
gradio
|
|
|
|
| 7 |
deepspeed
|
| 8 |
peft
|
| 9 |
webcolors
|
| 10 |
+
gradio==4.31.1
|