Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| from huggingface_hub import InferenceClient | |
| import math | |
| import os | |
| import base64 | |
| import json | |
| SYSTEM_PROMPT = ''' | |
| # Edit Instruction Rewriter | |
| You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
| Please strictly follow the rewriting rules below: | |
| ## 1. General Principles | |
| - Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language. | |
| - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
| - Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
| - All added objects or modifications must align with the logic and style of the scene in the input images. | |
| - If multiple sub-images are to be generated, describe the content of each sub-image individually. | |
| ## 2. Task-Type Handling Rules | |
| ### 1. Add, Delete, Replace Tasks | |
| - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
| - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
| > Original: "Add an animal" | |
| > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
| - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
| - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
| ### 2. Text Editing Tasks | |
| - All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization. | |
| - Both adding new text and replacing existing text are text replacement tasks, For example: | |
| - Replace "xx" to "yy" | |
| - Replace the mask / bounding box to "yy" | |
| - Replace the visual object to "yy" | |
| - Specify text position, color, and layout only if user has required. | |
| - If font is specified, keep the original language of the font. | |
| ### 3. Human Editing Tasks | |
| - Make the smallest changes to the given user's prompt. | |
| - If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually. | |
| - **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject’s identity consistency.** | |
| > Original: "Add eyebrows to the face" | |
| > Rewritten: "Slightly thicken the person’s eyebrows with little change, look natural." | |
| ### 4. Style Conversion or Enhancement Tasks | |
| - If a style is specified, describe it concisely using key visual features. For example: | |
| > Original: "Disco style" | |
| > Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors" | |
| - For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction. | |
| - **Colorization tasks (including old photo restoration) must use the fixed template:** | |
| "Restore and colorize the old photo." | |
| - Clearly specify the object to be modified. For example: | |
| > Original: Modify the subject in Picture 1 to match the style of Picture 2. | |
| > Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions. | |
| ### 5. Material Replacement | |
| - Clearly specify the object and the material. For example: "Change the material of the apple to papercut style." | |
| - For text material replacement, use the fixed template: | |
| "Change the material of text "xxxx" to laser style" | |
| ### 6. Logo/Pattern Editing | |
| - Material replacement should preserve the original shape and structure as much as possible. For example: | |
| > Original: "Convert to sapphire material" | |
| > Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure" | |
| - When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example: | |
| > Original: "Migrate the logo in the image to a new scene" | |
| > Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure" | |
| ### 7. Multi-Image Tasks | |
| - Rewritten prompts must clearly point out which image’s element is being modified. For example: | |
| > Original: "Replace the subject of picture 1 with the subject of picture 2" | |
| > Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2’s background unchanged" | |
| - For stylization tasks, describe the reference image’s style in the rewritten prompt, while preserving the visual content of the source image. | |
| ## 3. Rationale and Logic Check | |
| - Resolve contradictory instructions: e.g., “Remove all trees but keep all trees” requires logical correction. | |
| - Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.). | |
| # Output Format Example | |
| ```json | |
| { | |
| "Rewritten": "..." | |
| } | |
| ''' | |
| # --- Prompt Enhancement using Hugging Face InferenceClient --- | |
| def polish_prompt_hf(prompt, img_list): | |
| """ | |
| Rewrites the prompt using a Hugging Face InferenceClient. | |
| """ | |
| # Ensure HF_TOKEN is set | |
| api_key = os.environ.get("HF_TOKEN") | |
| if not api_key: | |
| print("Warning: HF_TOKEN not set. Falling back to original prompt.") | |
| return prompt | |
| try: | |
| # Initialize the client | |
| prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
| # Initialize the client | |
| client = InferenceClient( | |
| provider="novita", | |
| api_key=api_key, | |
| ) | |
| # Format the messages for the chat completions API | |
| sys_promot = "you are a helpful assistant, you should provide useful answers to users." | |
| messages = [ | |
| {"role": "system", "content": sys_promot}, | |
| {"role": "user", "content": []}] | |
| for img in img_list: | |
| messages[1]["content"].append( | |
| {"image": f"data:image/png;base64,{encode_image(img)}"}) | |
| messages[1]["content"].append({"text": f"{prompt}"}) | |
| completion = client.chat.completions.create( | |
| model="Qwen/Qwen3-Next-80B-A3B-Instruct", | |
| messages=messages, | |
| ) | |
| # Parse the response | |
| result = completion.choices[0].message.content | |
| # Try to extract JSON if present | |
| if '{"Rewritten"' in result: | |
| try: | |
| # Clean up the response | |
| result = result.replace('```json', '').replace('```', '') | |
| result_json = json.loads(result) | |
| polished_prompt = result_json.get('Rewritten', result) | |
| except: | |
| polished_prompt = result | |
| else: | |
| polished_prompt = result | |
| polished_prompt = polished_prompt.strip().replace("\n", " ") | |
| return polished_prompt | |
| except Exception as e: | |
| print(f"Error during API call to Hugging Face: {e}") | |
| # Fallback to original prompt if enhancement fails | |
| return prompt | |
| def encode_image(pil_image): | |
| import io | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Scheduler configuration for Lightning | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| # Initialize scheduler with Lightning config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| # Load the model pipeline | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| scheduler=scheduler, | |
| torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors" | |
| ) | |
| pipe.fuse_lora() | |
| # Apply the same optimizations from the first version | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # --- Ahead-of-time compilation --- | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # --- Main Inference Function (with hardcoded negative prompt) --- | |
| def infer( | |
| images, | |
| prompt, | |
| seed=42, | |
| randomize_seed=False, | |
| true_guidance_scale=1.0, | |
| num_inference_steps=4, | |
| height=None, | |
| width=None, | |
| rewrite_prompt=True, | |
| num_images_per_prompt=1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generates an image using the local Qwen-Image diffusers pipeline. | |
| """ | |
| # Hardcode the negative prompt as requested | |
| negative_prompt = " " | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Set up the generator for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Load input images into PIL Images | |
| pil_images = [] | |
| if images is not None: | |
| for item in images: | |
| try: | |
| if isinstance(item[0], Image.Image): | |
| pil_images.append(item[0].convert("RGB")) | |
| elif isinstance(item[0], str): | |
| pil_images.append(Image.open(item[0]).convert("RGB")) | |
| elif hasattr(item, "name"): | |
| pil_images.append(Image.open(item.name).convert("RGB")) | |
| except Exception: | |
| continue | |
| if height==256 and width==256: | |
| height, width = None, None | |
| print(f"Calling pipeline with prompt: '{prompt}'") | |
| print(f"Negative Prompt: '{negative_prompt}'") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}") | |
| if rewrite_prompt and len(pil_images) > 0: | |
| prompt = polish_prompt_hf(prompt, pil_images) | |
| print(f"Rewritten Prompt: {prompt}") | |
| # Generate the image | |
| image = pipe( | |
| image=pil_images if len(pil_images) > 0 else None, | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ).images | |
| return image, seed | |
| # --- Examples and UI Layout --- | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #logo-title { | |
| text-align: center; | |
| } | |
| #logo-title img { | |
| width: 400px; | |
| } | |
| #edit_text{margin-top: -62px !important} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(""" | |
| <div id="logo-title"> | |
| <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> | |
| <h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">[Plus] Fast, 8-steps with Lightning LoRA</h2> | |
| </div> | |
| """) | |
| gr.Markdown(""" | |
| [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. | |
| This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with the [Qwen-Image-Lightning v2](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA + [AoT compilation & FA3](https://huggingface.co/blog/zerogpu-aoti) for accelerated inference. | |
| Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_images = gr.Gallery(label="Input Images", | |
| show_label=False, | |
| type="pil", | |
| interactive=True) | |
| # result = gr.Image(label="Result", show_label=False, type="pil") | |
| result = gr.Gallery(label="Result", show_label=False, type="pil") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| placeholder="describe the edit instruction", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Edit!", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| # Negative prompt UI element is removed here | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| true_guidance_scale = gr.Slider( | |
| label="True guidance scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=1.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| value=4, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=None, | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=2048, | |
| step=8, | |
| value=None, | |
| ) | |
| rewrite_prompt = gr.Checkbox(label="Rewrite prompt (being fixed)", value=False) | |
| # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| input_images, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| rewrite_prompt, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |