Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,169 Bytes
51a1e24 38dac5e 60bac87 38dac5e 6bb05d6 60bac87 6bb05d6 60bac87 6bb05d6 60bac87 6bb05d6 60bac87 38dac5e 6bb05d6 38dac5e 6bb05d6 38dac5e 51a1e24 6bb05d6 51a1e24 6bb05d6 51a1e24 c239fc5 6bb05d6 65cc34c 6bb05d6 38dac5e 51a1e24 6bb05d6 51a1e24 38dac5e 51a1e24 38dac5e 6bb05d6 51a1e24 c239fc5 6bb05d6 38dac5e 6bb05d6 51a1e24 6bb05d6 38dac5e 6bb05d6 38dac5e 6bb05d6 51a1e24 6bb05d6 51a1e24 c239fc5 51a1e24 6bb05d6 51a1e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
import os
import base64
import json
from huggingface_hub import InferenceClient
def get_caption_language(prompt):
"""Detects if the prompt contains Chinese characters."""
ranges = [
('\u4e00', '\u9fff'), # CJK Unified Ideographs
]
for char in prompt:
if any(start <= char <= end for start, end in ranges):
return 'zh'
return 'en'
def polish_prompt(original_prompt, system_prompt, hf_token):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
Requires user-provided HF token for API access.
"""
if not hf_token or not hf_token.strip():
gr.Warning("HF Token is required for prompt rewriting but was not provided!")
return original_prompt
client = InferenceClient(
provider="cerebras",
api_key=hf_token,
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
max_tokens=2000,
)
polished_prompt = completion.choices[0].message.content
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during Hugging Face API call: {e}")
gr.Warning("Failed to rewrite prompt. Using original.")
return original_prompt
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Edit-Lightning",
weight_name="Qwen-Image-Edit-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
@spaces.GPU(duration=60)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8,
rewrite_prompt=False,
hf_token="",
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Requires user-provided HF token for prompt rewriting.
"""
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
if rewrite_prompt:
lang = get_caption_language(prompt)
system_prompt = SYSTEM_PROMPT_EDIT
polished_prompt = polish_prompt(prompt, system_prompt, hf_token)
print(f"Rewritten Prompt: {polished_prompt}")
prompt = polished_prompt
edited_images = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return edited_images, seed
MAX_SEED = np.iinfo(np.int32).max
examples = [
"Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
"Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
"Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
"Remove the blue sky and replace it with a dark night cityscape.",
"""Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used for "通义" and position it to the top left with a light heading-style font."""
]
with gr.Blocks() as demo:
gr.Markdown("# Qwen-Image-Edit with Prompt Enhancement")
gr.Markdown("⚠️ **Prompt rewriting requires your own [Hugging Face token](https://huggingface.co/settings/tokens)**")
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Text(label="Edit Instruction", placeholder="e.g. Add a dog to the right side.")
run_button = gr.Button("Edit", variant="primary")
result = gr.Gallery(label="Output Images", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps (Fast 8-step mode)",
minimum=4,
maximum=8,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Images per Prompt",
minimum=1,
maximum=4,
step=1,
value=1
)
with gr.Group():
rewrite_toggle = gr.Checkbox(label="Use Prompt Rewriter (Requires HF Token)", value=False, interactive=True)
hf_token_input = gr.Textbox(
label="Your Hugging Face Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
visible=False,
info="Required for prompt rewriting - get yours from [Hugging Face settings](https://huggingface.co/settings/tokens)"
)
def toggle_token_visibility(checked):
return gr.update(visible=checked)
rewrite_toggle.change(
toggle_token_visibility,
inputs=[rewrite_toggle],
outputs=[hf_token_input]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
hf_token_input,
num_images_per_prompt
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |