File size: 20,369 Bytes
94c44d0
 
 
 
 
 
10cb4f7
94c44d0
 
7646ed2
94c44d0
 
dd8a1e0
94c44d0
ca7d2ec
94c44d0
 
 
ca7d2ec
 
 
 
 
 
 
94c44d0
 
ac2dcb1
94c44d0
 
4bd1e2d
dfd6666
94c44d0
 
 
 
 
 
 
 
 
3a64b85
 
 
 
 
 
ac2dcb1
 
 
 
 
3a64b85
94c44d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd1e2d
2e9b71a
 
4bd1e2d
dd8a1e0
2e9b71a
4bd1e2d
2e9b71a
dd8a1e0
2e9b71a
4bd1e2d
 
 
 
 
dd8a1e0
 
2e9b71a
dd8a1e0
4bd1e2d
 
2e9b71a
4bd1e2d
 
 
 
 
 
 
 
 
 
 
 
2e9b71a
 
 
3a64b85
2e9b71a
 
 
 
 
 
 
 
 
dd8a1e0
 
 
 
 
 
4bd1e2d
dd8a1e0
 
 
 
4bd1e2d
dd8a1e0
 
4bd1e2d
dd8a1e0
 
4bd1e2d
94c44d0
2e9b71a
94c44d0
2e9b71a
94c44d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd1e2d
94c44d0
60d9af8
ac2dcb1
4bd1e2d
dd8a1e0
2e9b71a
94c44d0
 
 
 
 
 
2e9b71a
94c44d0
4bd1e2d
dd8a1e0
2e9b71a
4bd1e2d
94c44d0
2e9b71a
dd8a1e0
 
 
2e9b71a
4bd1e2d
 
 
 
 
 
 
 
dd8a1e0
 
4bd1e2d
 
 
 
 
 
 
10cb4f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c44d0
 
dfd6666
10cb4f7
94c44d0
 
 
 
 
dd8a1e0
94c44d0
 
 
 
 
 
 
 
 
3a64b85
 
 
 
 
 
 
 
 
8243ca4
94c44d0
 
 
 
 
60d9af8
94c44d0
60d9af8
94c44d0
10cb4f7
94c44d0
 
10cb4f7
5bab260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d9af8
5bab260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c44d0
 
5bab260
94c44d0
 
 
 
4bd1e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c44d0
4bd1e2d
94c44d0
 
dd8a1e0
94c44d0
dd8a1e0
94c44d0
 
 
 
 
 
 
 
 
 
fc005aa
 
94c44d0
 
fc005aa
 
 
 
 
 
 
 
60d9af8
fc005aa
 
60d9af8
fc005aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8a1e0
4bd1e2d
 
 
 
fc005aa
94c44d0
4bd1e2d
 
 
 
94c44d0
fc005aa
dd8a1e0
 
 
94c44d0
 
fc005aa
 
94c44d0
dd8a1e0
 
fc005aa
 
94c44d0
 
dd8a1e0
 
94c44d0
dd8a1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c44d0
dd8a1e0
94c44d0
dd8a1e0
 
2dc45f1
 
dd8a1e0
 
 
 
 
 
 
94c44d0
 
dd8a1e0
2dc45f1
8243ca4
dd8a1e0
60d9af8
94c44d0
 
dd8a1e0
2dc45f1
 
dd8a1e0
 
94c44d0
dd8a1e0
 
2dc45f1
 
dd8a1e0
fc005aa
dd8a1e0
94c44d0
 
5546101
94c44d0
dd8a1e0
 
 
 
 
94c44d0
 
60d9af8
dd8a1e0
94c44d0
 
7585b3f
 
 
 
 
 
 
 
 
 
 
94c44d0
dd8a1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c44d0
dd8a1e0
 
94c44d0
 
 
 
dd8a1e0
 
94c44d0
 
a302d1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_xformers_available
import os
import sys
import re
import gc
import json  # Added json import
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

# Model configuration
REWRITER_MODEL = "Qwen/Qwen1.5-4B-Chat"  # Upgraded to 4B for better JSON handling
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
LOC = os.getenv("QIE")

# Quantization configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True
)

rewriter_model = AutoModelForCausalLM.from_pretrained(
    REWRITER_MODEL,
    torch_dtype=dtype,
    device_map="auto",
    quantization_config=bnb_config,
)

# Preload enhancement model at startup
print("🔄 Loading prompt enhancement model...")
rewriter_tokenizer = AutoTokenizer.from_pretrained(REWRITER_MODEL)

print("✅ Enhancement model loaded and ready!")

SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:  
  `"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`  
  if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
  "Rewritten": "..."
}
'''


def extract_json_response(model_output: str) -> str:
    """Extract rewritten instruction from potentially messy JSON output"""
    # Remove code block markers first
    model_output = re.sub(r'```(?:json)?\s*', '', model_output)
    try:
        # Find the JSON portion in the output
        start_idx = model_output.find('{')
        end_idx = model_output.rfind('}')
        
        # Fix the condition - check if brackets were found
        if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
            print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
            return None
            
        # Expand to the full object including outer braces
        end_idx += 1  # Include the closing brace
        json_str = model_output[start_idx:end_idx]
        
        # Handle potential markdown or other formatting
        json_str = json_str.strip()
        
        # Try to parse JSON directly first
        try:
            data = json.loads(json_str)
        except json.JSONDecodeError as e:
            print(f"Direct JSON parsing failed: {e}")
            # If direct parsing fails, try cleanup
            # Quote keys properly
            json_str = re.sub(r'([^{}[\],\s"]+)(?=\s*:)', r'"\1"', json_str)
            # Remove any trailing commas that might cause issues
            json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
            # Try parsing again
            data = json.loads(json_str)
        
        # Extract rewritten prompt from possible key variations
        possible_keys = [
            "Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
            "Output", "output", "Enhanced", "enhanced"
        ]
        for key in possible_keys:
            if key in data:
                return data[key].strip()
        
        # Try nested path
        if "Response" in data and "Rewritten" in data["Response"]:
            return data["Response"]["Rewritten"].strip()
        
        # Handle nested JSON objects (additional protection)
        if isinstance(data, dict):
            for value in data.values():
                if isinstance(value, dict) and "Rewritten" in value:
                    return value["Rewritten"].strip()
        
        # Try to find any string value that looks like an instruction
        str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
        if str_values:
            return str_values[0].strip()
            
    except Exception as e:
        print(f"JSON parse error: {str(e)}")
        print(f"Model output was: {model_output}")
    return None


def polish_prompt(original_prompt: str) -> str:
    """Enhanced prompt rewriting using original system prompt with JSON handling"""
    
    # Format as Qwen chat
    messages = [
        {"role": "system", "content": SYSTEM_PROMPT_EDIT},
        {"role": "user", "content": original_prompt}
    ]
    
    text = rewriter_tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generated_ids = rewriter_model.generate(
            **model_inputs,
            max_new_tokens=256,
            do_sample=True,
            temperature=0.7,
            top_p=0.8,
            repetition_penalty=1.1,
            no_repeat_ngram_size=3,
            pad_token_id=rewriter_tokenizer.eos_token_id
        )
    
    # Extract and clean response
    enhanced = rewriter_tokenizer.decode(
        generated_ids[0][model_inputs.input_ids.shape[1]:],
        skip_special_tokens=True
    ).strip()
    
    print(f"Model raw output: {enhanced}")  # Debug logging
    
    # Try to extract JSON content
    rewritten_prompt = extract_json_response(enhanced)
    
    if rewritten_prompt:
        # Clean up remaining artifacts
        rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
        rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
        return rewritten_prompt
    else:
        # Fallback: try to extract from code blocks or just return cleaned content
        if '```' in enhanced:
            parts = enhanced.split('```')
            if len(parts) >= 2:
                rewritten_prompt = parts[1].strip()
            else:
                rewritten_prompt = enhanced
        else:
            rewritten_prompt = enhanced
        
        # Basic cleanup
        rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
        if ': ' in rewritten_prompt:
            rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
        
        return rewritten_prompt[:200] if rewritten_prompt else original_prompt

# Scheduler configuration for Lightning
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}

# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)


# Load main image editing pipeline
pipe = QwenImageEditPipeline.from_pretrained(
    LOC,
    scheduler=scheduler,
    torch_dtype=dtype
).to(device)

# Load LoRA weights for acceleration
pipe.load_lora_weights(
    "lightx2v/Qwen-Image-Lightning",
    weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()

if is_xformers_available():
    pipe.enable_xformers_memory_efficient_attention()
else:
    print("xformers not available")

# def unload_rewriter():
#     """Clear enhancement model from memory"""
#     global rewriter_tokenizer, rewriter_model
#     if rewriter_model:
#         del rewriter_tokenizer, rewriter_model
#         rewriter_tokenizer = None
#         rewriter_model = None
#     torch.cuda.empty_cache()
#     gc.collect()
@spaces.GPU()
def infer(
    image,
    prompt,
    seed=42,
    randomize_seed=False,
    true_guidance_scale=4.0,
    num_inference_steps=8,
    rewrite_prompt=True,
    num_images_per_prompt=1,
    progress=gr.Progress(track_tqdm=True),
):
    """Image editing endpoint with optimized prompt handling"""

    # Resize image to max 1024px on longest side
    def resize_image(pil_image, max_size=1024):
        """Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
        try:
            if pil_image is None:
                return pil_image
                
            width, height = pil_image.size
            max_dimension = max(width, height)
            
            if max_dimension <= max_size:
                return pil_image  # No resize needed
                
            # Calculate new dimensions maintaining aspect ratio
            scale = max_size / max_dimension
            new_width = int(width * scale)
            new_height = int(height * scale)
            
            # Resize image
            resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
            print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
            return resized_image
            
        except Exception as e:
            print(f"⚠️ Image resize failed: {e}")
            return pil_image  # Return original if resize fails
    
    # Add noise function for batch variation
    def add_noise_to_image(pil_image, noise_level=0.05):
        """Add slight noise to image to create variation in outputs"""
        try:
            if pil_image is None:
                return pil_image
                
            img_array = np.array(pil_image).astype(np.float32) / 255.0
            noise = np.random.normal(0, noise_level, img_array.shape)
            noisy_array = img_array + noise
            # Clip values to valid range
            noisy_array = np.clip(noisy_array, 0, 1)
            # Convert back to PIL
            noisy_array = (noisy_array * 255).astype(np.uint8)
            return Image.fromarray(noisy_array)
        except Exception as e:
            print(f"Warning: Could not add noise to image: {e}")
            return pil_image  # Return original if noise addition fails
    
    # Resize input image first
    image = resize_image(image, max_size=1024)
    
    original_prompt = prompt
    prompt_info = ""
    
    # Handle prompt rewriting
    if rewrite_prompt:
        try:
            enhanced_instruction = polish_prompt(original_prompt)
            if enhanced_instruction and enhanced_instruction != original_prompt:
                prompt_info = (
                    f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
                    f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
                    f"<p><strong>Original:</strong> {original_prompt}</p>"
                    f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
                    f"</div>"
                )
                prompt = enhanced_instruction
            else:
                prompt_info = (
                    f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
                    f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
                    f"<p>No enhancement applied or enhancement failed</p>"
                    f"</div>"
                )
        except Exception as e:
            print(f"Prompt enhancement error: {str(e)}")  # Debug logging
            gr.Warning(f"Prompt enhancement failed: {str(e)}")
            prompt_info = (
                f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
                f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
                f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
                f"</div>"
            )
    else:
        prompt_info = (
            f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
            f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
            f"<p>{original_prompt}</p>"
            f"</div>"
        )
    
    # Set base seed for reproducibility
    base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
    
    try:
        # Generate images with variation for batch mode
        if num_images_per_prompt > 1:
            edited_images = []
            for i in range(num_images_per_prompt):
                # Create unique seed for each image
                generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
                
                # Add slight noise to the image for variation
                noisy_image = add_noise_to_image(image, noise_level=0.05 + i*0.003)
                
                # Slightly vary guidance scale
                varied_guidance = true_guidance_scale + random.uniform(-0.5, 0.5)
                varied_guidance = max(1.0, min(10.0, varied_guidance))
                
                # Generate single image with variations
                result = pipe(
                    image=noisy_image,
                    prompt=prompt,
                    negative_prompt=" ",
                    num_inference_steps=num_inference_steps,
                    generator=generator,
                    true_cfg_scale=varied_guidance,
                    num_images_per_prompt=1
                ).images
                edited_images.extend(result)
        else:
            # Single image generation (unchanged)
            generator = torch.Generator(device=device).manual_seed(base_seed)
            edited_images = pipe(
                image=image,
                prompt=prompt,
                negative_prompt=" ",
                num_inference_steps=num_inference_steps,
                generator=generator,
                true_cfg_scale=true_guidance_scale,
                num_images_per_prompt=num_images_per_prompt
            ).images
        
        # Clear cache after generation
        if device == "cuda":
            torch.cuda.empty_cache()
            gc.collect()
        return edited_images, base_seed, prompt_info
    except Exception as e:
        # Clear cache on error
        if device == "cuda":
            torch.cuda.empty_cache()
            gc.collect()
        gr.Error(f"Image generation failed: {str(e)}")
        return [], base_seed, (
            f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00; background: #fef5f5'>"
            f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
            f"<p>{str(e)[:200]}</p>"
            f"</div>"
        )
        
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
    gr.Markdown("""
    <div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
        <h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
        <p>✨ 8-step inferencing with lightx2v's LoRA.</p>
        <p>📝 Local Prompt Enhancement, Batched Multi-image Generation</p>
    </div>
    """)
    
    with gr.Row(equal_height=True):
        # Input Column
        with gr.Column(scale=1):
            input_image = gr.Image(
                label="Source Image", 
                type="pil", 
                height=300
            )
            prompt = gr.Textbox(
                label="Edit Instructions", 
                placeholder="e.g. Replace the background with a beach sunset...",
                lines=2,
                max_lines=4
            )
            
            with gr.Row():
                rewrite_toggle = gr.Checkbox(
                    label="Enable Prompt Enhancement", 
                    value=True,
                    interactive=True
                )
                run_button = gr.Button(
                    "Generate Edits", 
                    variant="primary", 
                    min_width=120
                )
            
            with gr.Accordion("Advanced Parameters", open=False):
                with gr.Row():
                    seed = gr.Slider(
                        label="Seed", 
                        minimum=0, 
                        maximum=MAX_SEED, 
                        step=1, 
                        value=42
                    )
                    randomize_seed = gr.Checkbox(
                        label="Random Seed", 
                        value=True
                    )
                with gr.Row():
                    true_guidance_scale = gr.Slider(
                        label="Guidance Scale", 
                        minimum=1.0, 
                        maximum=10.0, 
                        step=0.1, 
                        value=4.0
                    )
                    num_inference_steps = gr.Slider(
                        label="Inference Steps", 
                        minimum=4, 
                        maximum=16, 
                        step=1, 
                        value=8
                    )
                num_images_per_prompt = gr.Slider(
                    label="Output Count", 
                    minimum=1, 
                    maximum=4, 
                    step=1, 
                    value=2
                )
            
        # Output Column
        with gr.Column(scale=2):
            result = gr.Gallery(
                label="Edited Images",
                columns=lambda x: min(x, 2),
                height=500,
                object_fit="cover",
                preview=True
            )
            prompt_info = gr.HTML(
                value="<div style='padding:15px; margin-top:15px'>"
                "Prompt details will appear after generation</div>"
            )
    
    # # Examples
    # gr.Examples(
    #     examples=[
    #         "Change the background scene to a rooftop bar at night",
    #         "Transform to pixel art style with 8-bit graphics",
    #         "Replace all text with 'Qwen AI' in futuristic font"
    #     ],
    #     inputs=[prompt],
    #     label="Sample Instructions",
    #     cache_examples=True
    # )

    # Set up processing
    inputs = [
        input_image,
        prompt,
        seed,
        randomize_seed,
        true_guidance_scale,
        num_inference_steps,
        rewrite_toggle,
        num_images_per_prompt
    ]
    
    outputs = [result, seed, prompt_info]
    
    run_button.click(
        fn=infer,
        inputs=inputs,
        outputs=outputs
    )
    
    prompt.submit(
        fn=infer,
        inputs=inputs,
        outputs=outputs
    )

demo.queue(max_size=5).launch()