Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,369 Bytes
94c44d0 10cb4f7 94c44d0 7646ed2 94c44d0 dd8a1e0 94c44d0 ca7d2ec 94c44d0 ca7d2ec 94c44d0 ac2dcb1 94c44d0 4bd1e2d dfd6666 94c44d0 3a64b85 ac2dcb1 3a64b85 94c44d0 4bd1e2d 2e9b71a 4bd1e2d dd8a1e0 2e9b71a 4bd1e2d 2e9b71a dd8a1e0 2e9b71a 4bd1e2d dd8a1e0 2e9b71a dd8a1e0 4bd1e2d 2e9b71a 4bd1e2d 2e9b71a 3a64b85 2e9b71a dd8a1e0 4bd1e2d dd8a1e0 4bd1e2d dd8a1e0 4bd1e2d dd8a1e0 4bd1e2d 94c44d0 2e9b71a 94c44d0 2e9b71a 94c44d0 4bd1e2d 94c44d0 60d9af8 ac2dcb1 4bd1e2d dd8a1e0 2e9b71a 94c44d0 2e9b71a 94c44d0 4bd1e2d dd8a1e0 2e9b71a 4bd1e2d 94c44d0 2e9b71a dd8a1e0 2e9b71a 4bd1e2d dd8a1e0 4bd1e2d 10cb4f7 94c44d0 dfd6666 10cb4f7 94c44d0 dd8a1e0 94c44d0 3a64b85 8243ca4 94c44d0 60d9af8 94c44d0 60d9af8 94c44d0 10cb4f7 94c44d0 10cb4f7 5bab260 60d9af8 5bab260 94c44d0 5bab260 94c44d0 4bd1e2d 94c44d0 4bd1e2d 94c44d0 dd8a1e0 94c44d0 dd8a1e0 94c44d0 fc005aa 94c44d0 fc005aa 60d9af8 fc005aa 60d9af8 fc005aa dd8a1e0 4bd1e2d fc005aa 94c44d0 4bd1e2d 94c44d0 fc005aa dd8a1e0 94c44d0 fc005aa 94c44d0 dd8a1e0 fc005aa 94c44d0 dd8a1e0 94c44d0 dd8a1e0 94c44d0 dd8a1e0 94c44d0 dd8a1e0 2dc45f1 dd8a1e0 94c44d0 dd8a1e0 2dc45f1 8243ca4 dd8a1e0 60d9af8 94c44d0 dd8a1e0 2dc45f1 dd8a1e0 94c44d0 dd8a1e0 2dc45f1 dd8a1e0 fc005aa dd8a1e0 94c44d0 5546101 94c44d0 dd8a1e0 94c44d0 60d9af8 dd8a1e0 94c44d0 7585b3f 94c44d0 dd8a1e0 94c44d0 dd8a1e0 94c44d0 dd8a1e0 94c44d0 a302d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_xformers_available
import os
import sys
import re
import gc
import json # Added json import
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Model configuration
REWRITER_MODEL = "Qwen/Qwen1.5-4B-Chat" # Upgraded to 4B for better JSON handling
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
LOC = os.getenv("QIE")
# Quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
rewriter_model = AutoModelForCausalLM.from_pretrained(
REWRITER_MODEL,
torch_dtype=dtype,
device_map="auto",
quantization_config=bnb_config,
)
# Preload enhancement model at startup
print("🔄 Loading prompt enhancement model...")
rewriter_tokenizer = AutoTokenizer.from_pretrained(REWRITER_MODEL)
print("✅ Enhancement model loaded and ready!")
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
def extract_json_response(model_output: str) -> str:
"""Extract rewritten instruction from potentially messy JSON output"""
# Remove code block markers first
model_output = re.sub(r'```(?:json)?\s*', '', model_output)
try:
# Find the JSON portion in the output
start_idx = model_output.find('{')
end_idx = model_output.rfind('}')
# Fix the condition - check if brackets were found
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
return None
# Expand to the full object including outer braces
end_idx += 1 # Include the closing brace
json_str = model_output[start_idx:end_idx]
# Handle potential markdown or other formatting
json_str = json_str.strip()
# Try to parse JSON directly first
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Direct JSON parsing failed: {e}")
# If direct parsing fails, try cleanup
# Quote keys properly
json_str = re.sub(r'([^{}[\],\s"]+)(?=\s*:)', r'"\1"', json_str)
# Remove any trailing commas that might cause issues
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
# Try parsing again
data = json.loads(json_str)
# Extract rewritten prompt from possible key variations
possible_keys = [
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
"Output", "output", "Enhanced", "enhanced"
]
for key in possible_keys:
if key in data:
return data[key].strip()
# Try nested path
if "Response" in data and "Rewritten" in data["Response"]:
return data["Response"]["Rewritten"].strip()
# Handle nested JSON objects (additional protection)
if isinstance(data, dict):
for value in data.values():
if isinstance(value, dict) and "Rewritten" in value:
return value["Rewritten"].strip()
# Try to find any string value that looks like an instruction
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
if str_values:
return str_values[0].strip()
except Exception as e:
print(f"JSON parse error: {str(e)}")
print(f"Model output was: {model_output}")
return None
def polish_prompt(original_prompt: str) -> str:
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
# Format as Qwen chat
messages = [
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
{"role": "user", "content": original_prompt}
]
text = rewriter_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = rewriter_model.generate(
**model_inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.1,
no_repeat_ngram_size=3,
pad_token_id=rewriter_tokenizer.eos_token_id
)
# Extract and clean response
enhanced = rewriter_tokenizer.decode(
generated_ids[0][model_inputs.input_ids.shape[1]:],
skip_special_tokens=True
).strip()
print(f"Model raw output: {enhanced}") # Debug logging
# Try to extract JSON content
rewritten_prompt = extract_json_response(enhanced)
if rewritten_prompt:
# Clean up remaining artifacts
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
return rewritten_prompt
else:
# Fallback: try to extract from code blocks or just return cleaned content
if '```' in enhanced:
parts = enhanced.split('```')
if len(parts) >= 2:
rewritten_prompt = parts[1].strip()
else:
rewritten_prompt = enhanced
else:
rewritten_prompt = enhanced
# Basic cleanup
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
if ': ' in rewritten_prompt:
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load main image editing pipeline
pipe = QwenImageEditPipeline.from_pretrained(
LOC,
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
if is_xformers_available():
pipe.enable_xformers_memory_efficient_attention()
else:
print("xformers not available")
# def unload_rewriter():
# """Clear enhancement model from memory"""
# global rewriter_tokenizer, rewriter_model
# if rewriter_model:
# del rewriter_tokenizer, rewriter_model
# rewriter_tokenizer = None
# rewriter_model = None
# torch.cuda.empty_cache()
# gc.collect()
@spaces.GPU()
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=4.0,
num_inference_steps=8,
rewrite_prompt=True,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""Image editing endpoint with optimized prompt handling"""
# Resize image to max 1024px on longest side
def resize_image(pil_image, max_size=1024):
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
try:
if pil_image is None:
return pil_image
width, height = pil_image.size
max_dimension = max(width, height)
if max_dimension <= max_size:
return pil_image # No resize needed
# Calculate new dimensions maintaining aspect ratio
scale = max_size / max_dimension
new_width = int(width * scale)
new_height = int(height * scale)
# Resize image
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
return resized_image
except Exception as e:
print(f"⚠️ Image resize failed: {e}")
return pil_image # Return original if resize fails
# Add noise function for batch variation
def add_noise_to_image(pil_image, noise_level=0.05):
"""Add slight noise to image to create variation in outputs"""
try:
if pil_image is None:
return pil_image
img_array = np.array(pil_image).astype(np.float32) / 255.0
noise = np.random.normal(0, noise_level, img_array.shape)
noisy_array = img_array + noise
# Clip values to valid range
noisy_array = np.clip(noisy_array, 0, 1)
# Convert back to PIL
noisy_array = (noisy_array * 255).astype(np.uint8)
return Image.fromarray(noisy_array)
except Exception as e:
print(f"Warning: Could not add noise to image: {e}")
return pil_image # Return original if noise addition fails
# Resize input image first
image = resize_image(image, max_size=1024)
original_prompt = prompt
prompt_info = ""
# Handle prompt rewriting
if rewrite_prompt:
try:
enhanced_instruction = polish_prompt(original_prompt)
if enhanced_instruction and enhanced_instruction != original_prompt:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
f"<p><strong>Original:</strong> {original_prompt}</p>"
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
f"</div>"
)
prompt = enhanced_instruction
else:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
f"<p>No enhancement applied or enhancement failed</p>"
f"</div>"
)
except Exception as e:
print(f"Prompt enhancement error: {str(e)}") # Debug logging
gr.Warning(f"Prompt enhancement failed: {str(e)}")
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
f"</div>"
)
else:
prompt_info = (
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
f"<p>{original_prompt}</p>"
f"</div>"
)
# Set base seed for reproducibility
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
try:
# Generate images with variation for batch mode
if num_images_per_prompt > 1:
edited_images = []
for i in range(num_images_per_prompt):
# Create unique seed for each image
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
# Add slight noise to the image for variation
noisy_image = add_noise_to_image(image, noise_level=0.05 + i*0.003)
# Slightly vary guidance scale
varied_guidance = true_guidance_scale + random.uniform(-0.5, 0.5)
varied_guidance = max(1.0, min(10.0, varied_guidance))
# Generate single image with variations
result = pipe(
image=noisy_image,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=varied_guidance,
num_images_per_prompt=1
).images
edited_images.extend(result)
else:
# Single image generation (unchanged)
generator = torch.Generator(device=device).manual_seed(base_seed)
edited_images = pipe(
image=image,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt
).images
# Clear cache after generation
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
return edited_images, base_seed, prompt_info
except Exception as e:
# Clear cache on error
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
gr.Error(f"Image generation failed: {str(e)}")
return [], base_seed, (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
f"<p>{str(e)[:200]}</p>"
f"</div>"
)
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
gr.Markdown("""
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation</p>
</div>
""")
with gr.Row(equal_height=True):
# Input Column
with gr.Column(scale=1):
input_image = gr.Image(
label="Source Image",
type="pil",
height=300
)
prompt = gr.Textbox(
label="Edit Instructions",
placeholder="e.g. Replace the background with a beach sunset...",
lines=2,
max_lines=4
)
with gr.Row():
rewrite_toggle = gr.Checkbox(
label="Enable Prompt Enhancement",
value=True,
interactive=True
)
run_button = gr.Button(
"Generate Edits",
variant="primary",
min_width=120
)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Random Seed",
value=True
)
with gr.Row():
true_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=4,
maximum=16,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Output Count",
minimum=1,
maximum=4,
step=1,
value=2
)
# Output Column
with gr.Column(scale=2):
result = gr.Gallery(
label="Edited Images",
columns=lambda x: min(x, 2),
height=500,
object_fit="cover",
preview=True
)
prompt_info = gr.HTML(
value="<div style='padding:15px; margin-top:15px'>"
"Prompt details will appear after generation</div>"
)
# # Examples
# gr.Examples(
# examples=[
# "Change the background scene to a rooftop bar at night",
# "Transform to pixel art style with 8-bit graphics",
# "Replace all text with 'Qwen AI' in futuristic font"
# ],
# inputs=[prompt],
# label="Sample Instructions",
# cache_examples=True
# )
# Set up processing
inputs = [
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
num_images_per_prompt
]
outputs = [result, seed, prompt_info]
run_button.click(
fn=infer,
inputs=inputs,
outputs=outputs
)
prompt.submit(
fn=infer,
inputs=inputs,
outputs=outputs
)
demo.queue(max_size=5).launch() |