LPX55's picture
Update app_fast.py
4985631 verified
raw
history blame
7.44 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
import os
import base64
import json
from huggingface_hub import InferenceClient
def get_caption_language(prompt):
"""Detects if the prompt contains Chinese characters."""
ranges = [
('\u4e00', '\u9fff'), # CJK Unified Ideographs
]
for char in prompt:
if any(start <= char <= end for start, end in ranges):
return 'zh'
return 'en'
def polish_prompt(original_prompt, system_prompt):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
api_key = os.environ.get("HF_TOKEN")
if not api_key:
raise EnvironmentError("HF_TOKEN is not set. Please set it in your environment.")
client = InferenceClient(
provider="cerebras",
api_key=api_key,
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
max_tokens=2000,
)
polished_prompt = completion.choices[0].message.content
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during Hugging Face API call: {e}")
return original_prompt
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
@spaces.GPU(duration=60)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8,
rewrite_prompt=False,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Uses Qwen-Image-Edit with optional prompt rewriting before execution.
"""
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
if rewrite_prompt:
lang = get_caption_language(prompt)
system_prompt = SYSTEM_PROMPT_EDIT
polished_prompt = polish_prompt(prompt, system_prompt)
print(f"Rewritten Prompt: {polished_prompt}")
prompt = polished_prompt
edited_images = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return edited_images, seed
MAX_SEED = np.iinfo(np.int32).max
examples = [
"Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
"Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
"Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
"Remove the blue sky and replace it with a dark night cityscape.",
"""Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used for "通义" and position it to the top left with a light heading-style font."""
]
with gr.Blocks() as demo:
gr.Markdown("# Qwen-Image-Edit with Prompt Enhancement and Fast Inference")
gr.Markdown("Try editing images with multi-modal instruction polishing.")
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Text(label="Edit Instruction", placeholder="e.g. Add a dog to the right side.")
run_button = gr.Button("Edit", variant="primary")
result = gr.Gallery(label="Output Images", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps (Fast 8-step mode)",
minimum=4,
maximum=8,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Images per Prompt",
minimum=1,
maximum=4,
step=1,
value=1
)
rewrite_prompt = gr.Checkbox(label="Use Prompt Rewriter", value=False, visible=True)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_prompt,
num_images_per_prompt
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()