LPX55's picture
Update app.py
4a83d65 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
from diffusers.utils import is_xformers_available
import os
import base64
import json
from huggingface_hub import InferenceClient
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
#############################
def get_caption_language(prompt):
"""Detects if the prompt contains Chinese characters."""
ranges = [
('\u4e00', '\u9fff'), # CJK Unified Ideographs
]
for char in prompt:
if any(start <= char <= end for start, end in ranges):
return 'zh'
return 'en'
def polish_prompt(original_prompt, system_prompt, hf_token):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
Requires user-provided HF token for API access.
"""
if not hf_token or not hf_token.strip():
gr.Warning("HF Token is required for prompt rewriting but was not provided!")
return original_prompt
client = InferenceClient(
provider="cerebras",
api_key=hf_token,
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
max_tokens=512,
)
polished_prompt = completion.choices[0].message.content
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during Hugging Face API call: {e}")
gr.Warning("Failed to rewrite prompt. Using original.")
return original_prompt
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
if is_xformers_available():
pipe.enable_xformers_memory_efficient_attention()
else:
print("xformers not available or failed to load.")
@spaces.GPU(duration=60)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8,
rewrite_prompt=False,
hf_token="",
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Requires user-provided HF token for prompt rewriting.
"""
original_prompt = prompt # Save original prompt for display
negative_prompt = " "
prompt_info = "" # Initialize info text
# Handle prompt rewriting with status messages
if rewrite_prompt:
if not hf_token.strip():
gr.Warning("HF Token is required for prompt rewriting but was not provided!")
prompt_info = f"""## ⚠️ Prompt Rewriting Skipped (No HF Token)
**Original Prompt:**
{original_prompt}"""
rewritten_prompt = original_prompt
else:
try:
rewritten_prompt = polish_prompt(original_prompt, SYSTEM_PROMPT_EDIT, hf_token)
prompt_info = f"""## ✅ Prompt Rewrite Successful
**Original Prompt:**
{original_prompt}
**Enhanced Prompt:**
{rewritten_prompt}"""
except Exception as e:
gr.Warning(f"Prompt rewriting failed: {str(e)}")
rewritten_prompt = original_prompt
prompt_info = f"""## ❌ Prompt Rewrite Failed
**Original Prompt:**
{original_prompt}
**Error:**
{str(e)}"""
else:
rewritten_prompt = original_prompt
prompt_info = f"""## Original Prompt (No Rewrite)
**User Input:**
{original_prompt}"""
# Generate images
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
edited_images = pipe(
image,
prompt=rewritten_prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return edited_images, seed, prompt_info
MAX_SEED = np.iinfo(np.int32).max
examples = [
"Replace the cat with a friendly golden retriever. Make it look happier, and add more background details.",
"Add text 'Qwen - AI for image editing' in Chinese at the bottom center with a small shadow.",
"Change the style to 1970s vintage, add old photo effect, restore any scratches on the wall or window.",
"Remove the blue sky and replace it with a dark night cityscape.",
"""Replace "Qwen" with "通义" in the Image. Ensure Chinese font is used for "通义" and position it to the top left with a light heading-style font."""
]
with gr.Blocks() as demo:
gr.Markdown("# Qwen-Image-Edit [FAST] with HF Prompt Enhancement")
gr.Markdown("✨ **8-step lightning inferencing with lightx2v's LoRA.**")
gr.Markdown("⚠️ **Prompt rewriting requires your own [Hugging Face token](https://huggingface.co/settings/tokens)**")
gr.Markdown("🚧 **Work in progress, further improvements coming soon.**")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Text(label="Edit Instruction", placeholder="e.g. Add a dog to the right side.")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps (Fast 8-step mode)",
minimum=4,
maximum=16,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Images per Prompt",
minimum=1,
maximum=4,
step=1,
value=1
)
run_button = gr.Button("Edit", variant="primary")
with gr.Column():
result = gr.Gallery(label="Output Images", show_label=False, columns=1)
# New prompt display component
prompt_info = gr.Markdown("## Prompt Details", visible=False)
with gr.Group():
rewrite_toggle = gr.Checkbox(label="Use Prompt Rewriter (Requires HF Token)", value=False, interactive=True)
hf_token_input = gr.Textbox(
label="Your Hugging Face Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
visible=False,
info="Required for prompt rewriting - get yours from [Hugging Face settings](https://huggingface.co/settings/tokens). API tokens are kept safe locally, but as good practice please make sure to double check the source code. Invalid or missing keys will revert to the original prompt entered."
)
def toggle_token_visibility(checked):
return gr.update(visible=checked)
rewrite_toggle.change(
toggle_token_visibility,
inputs=[rewrite_toggle],
outputs=[hf_token_input]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
hf_token_input,
num_images_per_prompt
],
outputs=[result, seed, prompt_info]
)
# Show prompt info box after processing
def set_prompt_visible():
return gr.update(visible=True)
run_button.click(
fn=set_prompt_visible,
inputs=None,
outputs=[prompt_info],
queue=False
)
prompt.submit(
fn=set_prompt_visible,
inputs=None,
outputs=[prompt_info],
queue=False
)
if __name__ == "__main__":
demo.launch()