Spaces:
Runtime error
Runtime error
LayBraid
commited on
Commit
·
ae92333
1
Parent(s):
b2c2198
:construction: update app
Browse files- requirements.txt +3 -1
- text_to_image.py +48 -1
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
streamlit==1.2.0
|
| 2 |
transformers~=4.19.4
|
| 3 |
-
numpy~=1.22.2
|
|
|
|
|
|
|
|
|
| 1 |
streamlit==1.2.0
|
| 2 |
transformers~=4.19.4
|
| 3 |
+
numpy~=1.22.2
|
| 4 |
+
nmslib~=2.1.1
|
| 5 |
+
Pillow~=9.0.1
|
text_to_image.py
CHANGED
|
@@ -1,16 +1,63 @@
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
from transformers import CLIPProcessor, FlaxCLIPModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
def get_image(text):
|
| 7 |
model = FlaxCLIPModel.from_pretrained("flax-community/clip-rsicd-v2")
|
| 8 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
|
|
|
| 9 |
|
| 10 |
inputs = processor(text=[text], image=None, return_tensors="jax", padding=True)
|
| 11 |
|
| 12 |
vector = model.get_text_features(**inputs)
|
| 13 |
vector = np.asarray(vector)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def app():
|
|
@@ -20,5 +67,5 @@ def app():
|
|
| 20 |
text = st.text_input("Enter text: ")
|
| 21 |
|
| 22 |
if st.button("Search"):
|
| 23 |
-
|
| 24 |
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
import numpy as np
|
| 4 |
import streamlit as st
|
| 5 |
+
from PIL import Image
|
| 6 |
from transformers import CLIPProcessor, FlaxCLIPModel
|
| 7 |
+
import nmslib
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def load_index(image_vector_file):
|
| 11 |
+
filenames, image_vecs = [], []
|
| 12 |
+
fvec = open(image_vector_file, "r")
|
| 13 |
+
for line in fvec:
|
| 14 |
+
cols = line.strip().split(' ')
|
| 15 |
+
filename = cols[0]
|
| 16 |
+
image_vec = np.array([float(x) for x in cols[1].split(',')])
|
| 17 |
+
filenames.append(filename)
|
| 18 |
+
image_vecs.append(image_vec)
|
| 19 |
+
V = np.array(image_vecs)
|
| 20 |
+
index = nmslib.init(method='hnsw', space='cosinesimil')
|
| 21 |
+
index.addDataPointBatch(V)
|
| 22 |
+
index.createIndex({'post': 2}, print_progress=True)
|
| 23 |
+
return filenames, index
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_captions(caption_file):
|
| 27 |
+
image2caption = {}
|
| 28 |
+
with open(caption_file, "r") as fcap:
|
| 29 |
+
for line in fcap:
|
| 30 |
+
data = json.loads(line.strip())
|
| 31 |
+
filename = data["filename"]
|
| 32 |
+
captions = data["captions"]
|
| 33 |
+
image2caption[filename] = captions
|
| 34 |
+
return image2caption
|
| 35 |
|
| 36 |
|
| 37 |
def get_image(text):
|
| 38 |
model = FlaxCLIPModel.from_pretrained("flax-community/clip-rsicd-v2")
|
| 39 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 40 |
+
filename, index = load_index("./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv")
|
| 41 |
+
image2caption = load_captions("./images/test-captions.json")
|
| 42 |
|
| 43 |
inputs = processor(text=[text], image=None, return_tensors="jax", padding=True)
|
| 44 |
|
| 45 |
vector = model.get_text_features(**inputs)
|
| 46 |
vector = np.asarray(vector)
|
| 47 |
+
ids, distances = index.knnQuery(vector, k=10)
|
| 48 |
+
result_filenames = [filename[id] for id in ids]
|
| 49 |
+
for rank, (result_filename, score) in enumerate(zip(result_filenames, distances)):
|
| 50 |
+
caption = "{:s} (score: {:.3f})".format(result_filename, 1.0 - score)
|
| 51 |
+
col1, col2, col3 = st.columns([2, 10, 10])
|
| 52 |
+
col1.markdown("{:d}.".format(rank + 1))
|
| 53 |
+
col2.image(Image.open(os.path.join("./images", result_filename)),
|
| 54 |
+
caption=caption)
|
| 55 |
+
caption_text = []
|
| 56 |
+
for caption in image2caption[result_filename]:
|
| 57 |
+
caption_text.append("* {:s}".format(caption))
|
| 58 |
+
col3.markdown("".join(caption_text))
|
| 59 |
+
st.markdown("---")
|
| 60 |
+
suggest_idx = -1
|
| 61 |
|
| 62 |
|
| 63 |
def app():
|
|
|
|
| 67 |
text = st.text_input("Enter text: ")
|
| 68 |
|
| 69 |
if st.button("Search"):
|
| 70 |
+
get_image(text)
|
| 71 |
|