Delete app.py
Browse files
app.py
DELETED
|
@@ -1,95 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import torch
|
| 4 |
-
import numpy as np
|
| 5 |
-
import faiss
|
| 6 |
-
|
| 7 |
-
from transformers import (
|
| 8 |
-
BlipProcessor,
|
| 9 |
-
BlipForConditionalGeneration,
|
| 10 |
-
CLIPProcessor,
|
| 11 |
-
CLIPModel
|
| 12 |
-
)
|
| 13 |
-
from datasets import load_dataset
|
| 14 |
-
|
| 15 |
-
wikiart_dataset = load_dataset("huggan/wikiart", split="train", streaming=True)
|
| 16 |
-
|
| 17 |
-
def get_item_streaming(dataset, idx):
|
| 18 |
-
for i, item in enumerate(dataset):
|
| 19 |
-
if i == idx:
|
| 20 |
-
return item
|
| 21 |
-
raise IndexError("Index out of range")
|
| 22 |
-
|
| 23 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
|
| 24 |
-
|
| 25 |
-
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 26 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device).eval()
|
| 27 |
-
|
| 28 |
-
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device).eval()
|
| 29 |
-
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 30 |
-
|
| 31 |
-
image_index = faiss.read_index("image_index.faiss")
|
| 32 |
-
text_index = faiss.read_index("text_index.faiss")
|
| 33 |
-
|
| 34 |
-
def generate_caption(image: Image.Image):
|
| 35 |
-
inputs = blip_processor(image, return_tensors="pt").to(device)
|
| 36 |
-
with torch.no_grad():
|
| 37 |
-
caption_ids = blip_model.generate(**inputs)
|
| 38 |
-
caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True)
|
| 39 |
-
return caption
|
| 40 |
-
|
| 41 |
-
def get_clip_text_embedding(text):
|
| 42 |
-
inputs = clip_processor(text=[text], return_tensors="pt", padding=True).to(device)
|
| 43 |
-
with torch.no_grad():
|
| 44 |
-
features = clip_model.get_text_features(**inputs)
|
| 45 |
-
features = features.cpu().numpy().astype("float32")
|
| 46 |
-
faiss.normalize_L2(features)
|
| 47 |
-
return features
|
| 48 |
-
|
| 49 |
-
def get_clip_image_embedding(image):
|
| 50 |
-
inputs = clip_processor(images=image, return_tensors="pt").to(device)
|
| 51 |
-
with torch.no_grad():
|
| 52 |
-
features = clip_model.get_image_features(**inputs)
|
| 53 |
-
features = features.cpu().numpy().astype("float32")
|
| 54 |
-
faiss.normalize_L2(features)
|
| 55 |
-
return features
|
| 56 |
-
|
| 57 |
-
def get_results_with_images(embedding, index, top_k=2):
|
| 58 |
-
D, I = index.search(embedding, top_k)
|
| 59 |
-
results = []
|
| 60 |
-
for idx in I[0]:
|
| 61 |
-
try:
|
| 62 |
-
item = get_item_streaming(wikiart_dataset, int(idx))
|
| 63 |
-
img = item["image"]
|
| 64 |
-
title = item.get("title", "Untitled")
|
| 65 |
-
artist = item.get("artist", "Unknown")
|
| 66 |
-
caption = f"ID: {idx}\n{title} — {artist}"
|
| 67 |
-
results.append((img, caption))
|
| 68 |
-
except IndexError:
|
| 69 |
-
continue
|
| 70 |
-
return results
|
| 71 |
-
|
| 72 |
-
# Основная функция поиска
|
| 73 |
-
def search_similar_images(image: Image.Image):
|
| 74 |
-
caption = generate_caption(image)
|
| 75 |
-
text_emb = get_clip_text_embedding(caption)
|
| 76 |
-
image_emb = get_clip_image_embedding(image)
|
| 77 |
-
|
| 78 |
-
text_results = get_results_with_images(text_emb, text_index)
|
| 79 |
-
image_results = get_results_with_images(image_emb, image_index)
|
| 80 |
-
|
| 81 |
-
return caption, text_results, image_results
|
| 82 |
-
|
| 83 |
-
demo = gr.Interface(
|
| 84 |
-
fn=search_similar_images,
|
| 85 |
-
inputs=gr.Image(label="Загрузите изображение", type="pil"),
|
| 86 |
-
outputs=[
|
| 87 |
-
gr.Textbox(label="📜 Сгенерированное описание"),
|
| 88 |
-
gr.Gallery(label="🔍 Похожие по описанию (CLIP)", height="auto", columns=2),
|
| 89 |
-
gr.Gallery(label="🎨 Похожие по изображению (CLIP)", height="auto", columns=2)
|
| 90 |
-
],
|
| 91 |
-
title="🎨 Semantic WikiArt Search (BLIP + CLIP)",
|
| 92 |
-
description="Загрузите изображение. Модель BLIP сгенерирует описание, а CLIP найдёт похожие картины по тексту и изображению."
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|