Spaces:
Running
Running
Faster search and Table
Browse files- Dockerfile +5 -0
- app.py +101 -42
- create_index.py +52 -0
- requirements.txt +1 -0
Dockerfile
CHANGED
|
@@ -19,6 +19,9 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
| 19 |
# Copy the application code
|
| 20 |
COPY app.py .
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# Expose the port Dash will run on
|
| 23 |
EXPOSE 7860
|
| 24 |
|
|
@@ -29,6 +32,8 @@ RUN --mount=type=secret,id=MATERIALS_PROJECT_API_KEY \
|
|
| 29 |
# Create the cache directory and set permissions
|
| 30 |
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
| 31 |
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Set an environment variable for Hugging Face cache
|
| 34 |
ENV HF_HOME=/app/.cache
|
|
|
|
| 19 |
# Copy the application code
|
| 20 |
COPY app.py .
|
| 21 |
|
| 22 |
+
# Copy the preprocessing script
|
| 23 |
+
COPY create_index.py .
|
| 24 |
+
|
| 25 |
# Expose the port Dash will run on
|
| 26 |
EXPOSE 7860
|
| 27 |
|
|
|
|
| 32 |
# Create the cache directory and set permissions
|
| 33 |
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
| 34 |
|
| 35 |
+
# Create the index
|
| 36 |
+
RUN python create_index.py
|
| 37 |
|
| 38 |
# Set an environment variable for Hugging Face cache
|
| 39 |
ENV HF_HOME=/app/.cache
|
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from pymatgen.core import Structure
|
|
| 11 |
from pymatgen.ext.matproj import MPRester
|
| 12 |
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 14 |
|
| 15 |
# Load only the train split of the dataset
|
| 16 |
dataset = load_dataset(
|
|
@@ -40,9 +41,40 @@ dataset = load_dataset(
|
|
| 40 |
],
|
| 41 |
)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
# Initialize the Dash app
|
| 48 |
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
|
|
@@ -58,11 +90,11 @@ layout = html.Div(
|
|
| 58 |
[
|
| 59 |
html.H3("Search for materials by elements (eg. 'Ac,Cd,Ge')"),
|
| 60 |
dmp.MaterialsInput(
|
| 61 |
-
allowedInputTypes=["elements"],
|
| 62 |
hidePeriodicTable=False,
|
| 63 |
periodicTableMode="toggle",
|
| 64 |
showSubmitButton=True,
|
| 65 |
-
submitButtonText="
|
| 66 |
type="elements",
|
| 67 |
id="materials-input",
|
| 68 |
),
|
|
@@ -79,10 +111,24 @@ layout = html.Div(
|
|
| 79 |
html.Div(
|
| 80 |
[
|
| 81 |
html.Label("Select Material"),
|
| 82 |
-
dcc.Dropdown(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
),
|
| 87 |
],
|
| 88 |
style={"margin-bottom": "20px"},
|
|
@@ -118,40 +164,51 @@ layout = html.Div(
|
|
| 118 |
)
|
| 119 |
|
| 120 |
|
| 121 |
-
# Function to search for materials
|
| 122 |
def search_materials(query):
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
return options
|
| 139 |
|
| 140 |
|
| 141 |
-
# Callback to update the
|
| 142 |
@app.callback(
|
| 143 |
-
Output("
|
| 144 |
-
Output("material-dropdown", "value"),
|
| 145 |
Input("materials-input", "submitButtonClicks"),
|
| 146 |
Input("materials-input", "value"),
|
| 147 |
)
|
| 148 |
def on_submit_materials_input(n_clicks, query):
|
| 149 |
if n_clicks is None or not query:
|
| 150 |
-
return []
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
# Callback to display the selected material
|
|
@@ -161,12 +218,14 @@ def on_submit_materials_input(n_clicks, query):
|
|
| 161 |
Output("properties-container", "children"),
|
| 162 |
],
|
| 163 |
Input("display-button", "n_clicks"),
|
| 164 |
-
|
| 165 |
)
|
| 166 |
-
def display_material(n_clicks,
|
| 167 |
-
if n_clicks is None or not
|
| 168 |
return "", ""
|
| 169 |
-
|
|
|
|
|
|
|
| 170 |
|
| 171 |
structure = Structure(
|
| 172 |
[x for y in row["lattice_vectors"] for x in y],
|
|
@@ -180,11 +239,11 @@ def display_material(n_clicks, material_id):
|
|
| 180 |
|
| 181 |
# Extract key properties
|
| 182 |
properties = {
|
| 183 |
-
"Material ID": row
|
| 184 |
-
"Formula": row
|
| 185 |
-
"Energy per atom (eV/atom)": row
|
| 186 |
-
"Band Gap (eV)": row
|
| 187 |
-
"Total Magnetization (μB/f.u.)": row
|
| 188 |
}
|
| 189 |
|
| 190 |
# Format properties as an HTML table
|
|
|
|
| 11 |
from pymatgen.ext.matproj import MPRester
|
| 12 |
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 14 |
+
top_k = 100
|
| 15 |
|
| 16 |
# Load only the train split of the dataset
|
| 17 |
dataset = load_dataset(
|
|
|
|
| 41 |
],
|
| 42 |
)
|
| 43 |
|
| 44 |
+
display_columns = [
|
| 45 |
+
"chemical_formula_descriptive",
|
| 46 |
+
"functional",
|
| 47 |
+
"immutable_id",
|
| 48 |
+
"energy",
|
| 49 |
+
]
|
| 50 |
+
display_names = {
|
| 51 |
+
"chemical_formula_descriptive": "Formula",
|
| 52 |
+
"functional": "Functional",
|
| 53 |
+
"immutable_id": "Material ID",
|
| 54 |
+
"energy": "Energy (eV)",
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
mapping_table_idx_dataset_idx = {}
|
| 58 |
+
|
| 59 |
+
import numpy as np
|
| 60 |
+
import periodictable
|
| 61 |
+
|
| 62 |
+
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
|
| 63 |
+
|
| 64 |
+
# import re
|
| 65 |
+
#
|
| 66 |
+
# dataset_index = np.zeros((len(dataset), 118))
|
| 67 |
+
# import tqdm
|
| 68 |
+
#
|
| 69 |
+
# for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
| 70 |
+
# for el in row["chemical_formula_descriptive"].split(" "):
|
| 71 |
+
# matches = re.findall(r"([a-zA-Z]+)([0-9]*)", el)
|
| 72 |
+
# el = matches[0][0]
|
| 73 |
+
# numb = int(matches[0][1]) if matches[0][1] else 1
|
| 74 |
+
# dataset_index[i][map_periodic_table[el]] = numb
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
dataset_index = np.load("dataset_index.npy")
|
| 78 |
|
| 79 |
# Initialize the Dash app
|
| 80 |
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
|
|
|
|
| 90 |
[
|
| 91 |
html.H3("Search for materials by elements (eg. 'Ac,Cd,Ge')"),
|
| 92 |
dmp.MaterialsInput(
|
| 93 |
+
allowedInputTypes=["elements", "formula"],
|
| 94 |
hidePeriodicTable=False,
|
| 95 |
periodicTableMode="toggle",
|
| 96 |
showSubmitButton=True,
|
| 97 |
+
submitButtonText="Search",
|
| 98 |
type="elements",
|
| 99 |
id="materials-input",
|
| 100 |
),
|
|
|
|
| 111 |
html.Div(
|
| 112 |
[
|
| 113 |
html.Label("Select Material"),
|
| 114 |
+
# dcc.Dropdown(
|
| 115 |
+
# id="material-dropdown",
|
| 116 |
+
# options=[], # Empty options initially
|
| 117 |
+
# value=None,
|
| 118 |
+
# ),
|
| 119 |
+
dash.dash_table.DataTable(
|
| 120 |
+
id="table",
|
| 121 |
+
columns=[
|
| 122 |
+
{"name": display_names[col], "id": col}
|
| 123 |
+
for col in display_columns
|
| 124 |
+
],
|
| 125 |
+
data=[{}],
|
| 126 |
+
style_table={
|
| 127 |
+
"overflowX": "auto",
|
| 128 |
+
"height": "400px",
|
| 129 |
+
"overflowY": "auto",
|
| 130 |
+
},
|
| 131 |
+
style_cell={"textAlign": "left"},
|
| 132 |
),
|
| 133 |
],
|
| 134 |
style={"margin-bottom": "20px"},
|
|
|
|
| 164 |
)
|
| 165 |
|
| 166 |
|
|
|
|
| 167 |
def search_materials(query):
|
| 168 |
+
query_vector = np.zeros(118)
|
| 169 |
+
|
| 170 |
+
if "," in query:
|
| 171 |
+
element_list = [el.strip() for el in query.split(",")]
|
| 172 |
+
for el in element_list:
|
| 173 |
+
query_vector[map_periodic_table[el]] = 1
|
| 174 |
+
else:
|
| 175 |
+
# Formula
|
| 176 |
+
import re
|
| 177 |
+
|
| 178 |
+
matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
|
| 179 |
+
for el, numb in matches:
|
| 180 |
+
numb = int(numb) if numb else 1
|
| 181 |
+
query_vector[map_periodic_table[el]] = numb
|
| 182 |
+
|
| 183 |
+
similarity = np.dot(dataset_index, query_vector) / (
|
| 184 |
+
np.linalg.norm(dataset_index) * np.linalg.norm(query_vector)
|
| 185 |
+
)
|
| 186 |
+
print(similarity[::-1][:top_k])
|
| 187 |
+
indices = np.argsort(similarity)[::-1][:top_k]
|
| 188 |
+
|
| 189 |
+
options = [dataset[int(i)] for i in indices]
|
| 190 |
+
|
| 191 |
+
mapping_table_idx_dataset_idx.clear()
|
| 192 |
+
for i, idx in enumerate(indices):
|
| 193 |
+
mapping_table_idx_dataset_idx[int(i)] = int(idx)
|
| 194 |
+
|
| 195 |
return options
|
| 196 |
|
| 197 |
|
| 198 |
+
# Callback to update the table based on search
|
| 199 |
@app.callback(
|
| 200 |
+
Output("table", "data"),
|
|
|
|
| 201 |
Input("materials-input", "submitButtonClicks"),
|
| 202 |
Input("materials-input", "value"),
|
| 203 |
)
|
| 204 |
def on_submit_materials_input(n_clicks, query):
|
| 205 |
if n_clicks is None or not query:
|
| 206 |
+
return []
|
| 207 |
+
|
| 208 |
+
entries = search_materials(query)
|
| 209 |
+
print(len(entries))
|
| 210 |
+
|
| 211 |
+
return [{col: entry[col] for col in display_columns} for entry in entries]
|
| 212 |
|
| 213 |
|
| 214 |
# Callback to display the selected material
|
|
|
|
| 218 |
Output("properties-container", "children"),
|
| 219 |
],
|
| 220 |
Input("display-button", "n_clicks"),
|
| 221 |
+
Input("table", "active_cell"),
|
| 222 |
)
|
| 223 |
+
def display_material(n_clicks, active_cell):
|
| 224 |
+
if n_clicks is None or not active_cell:
|
| 225 |
return "", ""
|
| 226 |
+
|
| 227 |
+
idx_active = active_cell["row"]
|
| 228 |
+
row = dataset[mapping_table_idx_dataset_idx[idx_active]]
|
| 229 |
|
| 230 |
structure = Structure(
|
| 231 |
[x for y in row["lattice_vectors"] for x in y],
|
|
|
|
| 239 |
|
| 240 |
# Extract key properties
|
| 241 |
properties = {
|
| 242 |
+
"Material ID": row["immutable_id"],
|
| 243 |
+
"Formula": row["chemical_formula_descriptive"],
|
| 244 |
+
"Energy per atom (eV/atom)": row["energy"] / len(row["species_at_sites"]),
|
| 245 |
+
"Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"],
|
| 246 |
+
"Total Magnetization (μB/f.u.)": row["total_magnetization"],
|
| 247 |
}
|
| 248 |
|
| 249 |
# Format properties as an HTML table
|
create_index.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import periodictable
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 9 |
+
|
| 10 |
+
# Load only the train split of the dataset
|
| 11 |
+
dataset = load_dataset(
|
| 12 |
+
"LeMaterial/leDataset",
|
| 13 |
+
token=HF_TOKEN,
|
| 14 |
+
split="train",
|
| 15 |
+
columns=[
|
| 16 |
+
"lattice_vectors",
|
| 17 |
+
"species_at_sites",
|
| 18 |
+
"cartesian_site_positions",
|
| 19 |
+
"energy",
|
| 20 |
+
"energy_corrected",
|
| 21 |
+
"immutable_id",
|
| 22 |
+
"elements",
|
| 23 |
+
"functional",
|
| 24 |
+
"stress_tensor",
|
| 25 |
+
"magnetic_moments",
|
| 26 |
+
"forces",
|
| 27 |
+
"band_gap_direct",
|
| 28 |
+
"band_gap_indirect",
|
| 29 |
+
"dos_ef",
|
| 30 |
+
"charges",
|
| 31 |
+
"functional",
|
| 32 |
+
"chemical_formula_reduced",
|
| 33 |
+
"chemical_formula_descriptive",
|
| 34 |
+
"total_magnetization",
|
| 35 |
+
],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
dataset_index = np.zeros((len(dataset), 118))
|
| 43 |
+
import tqdm
|
| 44 |
+
|
| 45 |
+
for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
| 46 |
+
for el in row["chemical_formula_descriptive"].split(" "):
|
| 47 |
+
matches = re.findall(r"([a-zA-Z]+)([0-9]*)", el)
|
| 48 |
+
el = matches[0][0]
|
| 49 |
+
numb = int(matches[0][1]) if matches[0][1] else 1
|
| 50 |
+
dataset_index[i][map_periodic_table[el]] = numb
|
| 51 |
+
|
| 52 |
+
np.save("dataset_index.npy", dataset_index)
|
requirements.txt
CHANGED
|
@@ -9,3 +9,4 @@ pandas
|
|
| 9 |
dash-bootstrap-components
|
| 10 |
datasets
|
| 11 |
dash-mp-components
|
|
|
|
|
|
| 9 |
dash-bootstrap-components
|
| 10 |
datasets
|
| 11 |
dash-mp-components
|
| 12 |
+
periodictable
|