Spaces:
Running
Running
File size: 9,079 Bytes
37a3be7 0d1d7d7 a3c9a3f 0d1d7d7 525a58f 0d1d7d7 525a58f 0d1d7d7 0cd2462 0d1d7d7 0cd2462 0d1d7d7 525a58f a3c9a3f 525a58f 0d1d7d7 525a58f 0d1d7d7 a3c9a3f 525a58f 0d1d7d7 a3c9a3f 0d1d7d7 bc7fbc4 0d1d7d7 525a58f 0d1d7d7 0cd2462 0d1d7d7 0cd2462 0d1d7d7 bc7fbc4 0d1d7d7 bc7fbc4 0d1d7d7 0cd2462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "transformers==4.56.2"])
import logging
from typing import List, Dict, Tuple
import gradio as gr
from pylate import indexes, models, retrieve
from documents import MULTILINGUAL_DOCUMENTS
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
class CrossLingualRetriever:
"""Cross-lingual retrieval system using LiquidAI's LFM2-ColBERT model."""
def __init__(self, model_name: str = "LiquidAI/LFM2-ColBERT-350M-RC"):
"""Initialize the retriever with model and index."""
logger.info(f"Loading model: {model_name}")
self.model = models.ColBERT(model_name_or_path=model_name)
# Set padding token
self.model.tokenizer.pad_token = self.model.tokenizer.eos_token
# Initialize PLAID index
self.index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
override=True,
)
self.retriever = retrieve.ColBERT(index=self.index)
self.documents_data = []
logger.info("Model and index initialized successfully")
def load_documents(self, documents: List[Dict[str, str]]) -> None:
"""Load and index multilingual documents."""
logger.info(f"Loading {len(documents)} documents")
self.documents_data = documents
documents_ids = [doc["id"] for doc in documents]
documents_text = [doc["text"] for doc in documents]
# Encode documents
documents_embeddings = self.model.encode(
documents_text,
batch_size=32,
is_query=False,
show_progress_bar=True,
)
# Add to index
self.index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
logger.info("Documents indexed successfully")
def search(self, query: str, k: int = 5) -> List[Dict]:
"""Perform cross-lingual search."""
logger.info(f"Searching for: {query}")
# Encode query
query_embedding = self.model.encode(
[query],
batch_size=32,
is_query=True,
show_progress_bar=False,
)
# Retrieve results
scores = self.retriever.retrieve(
queries_embeddings=query_embedding,
k=k,
)
# Format results
results = []
for score in scores[0]:
doc = next((d for d in self.documents_data if d["id"] == score["id"]), None)
if doc:
results.append({
"id": score["id"],
"score": round(score["score"], 4),
"text": doc["text"],
"language": doc["language"],
"title": doc["title"],
"category": doc["category"]
})
return results
# Initialize retriever and load documents
retriever = CrossLingualRetriever()
retriever.load_documents(MULTILINGUAL_DOCUMENTS)
def format_results(results: List[Dict]) -> str:
"""Format search results as HTML for better visualization."""
if not results:
return "<div style='padding: 20px; text-align: center; color: #666;'>No results found</div>"
html = "<div style='font-family: Arial, sans-serif;'>"
for i, result in enumerate(results, 1):
score_color = "#22c55e" if result["score"] > 30 else "#eab308" if result["score"] > 20 else "#ef4444"
html += f"""
<div style='margin-bottom: 20px; padding: 15px; border: 1px solid #e5e7eb; border-radius: 8px; background: #f9fafb;'>
<div style='display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;'>
<div>
<span style='font-weight: bold; font-size: 16px;'>#{i} {result["title"]}</span>
<span style='margin-left: 10px; padding: 2px 8px; background: #fef3c7; color: #92400e; border-radius: 4px; font-size: 12px;'>{result["category"]}</span>
<span style='margin-left: 5px; padding: 2px 8px; background: #dbeafe; color: #1e40af; border-radius: 4px; font-size: 12px;'>{result["language"]}</span>
</div>
<span style='padding: 4px 12px; background: {score_color}; color: white; border-radius: 4px; font-weight: bold;'>
Score: {result["score"]}
</span>
</div>
<div style='color: #374151; line-height: 1.6;'>
{result["text"]}
</div>
</div>
"""
html += "</div>"
return html
def search_documents(query: str, top_k: int) -> Tuple[str, str]:
"""Search documents and return formatted results."""
if not query.strip():
return "", "Please enter a search query."
try:
results = retriever.search(query, k=min(top_k, 10))
formatted_results = format_results(results)
# Create summary
if results:
languages_found = set(r["language"] for r in results)
summary = f"โ
Found {len(results)} relevant documents across {len(languages_found)} language(s): {', '.join(sorted(languages_found))}"
else:
summary = "โ No relevant documents found."
return formatted_results, summary
except Exception as e:
logger.error(f"Search error: {e}")
return "", f"โ Error during search: {str(e)}"
# Example queries in different languages
EXAMPLE_QUERIES = [
["What is artificial intelligence?", 8],
["ยฟQuรฉ es el cambio climรกtico?", 4],
["์์ ์ปดํจํ
์ด๋ ๋ฌด์์ธ๊ฐ์?", 6],
["ู
ุง ูู ุงูุตุญุฉ ุงูููุณูุฉุ", 5],
["้ๅญ่ฎก็ฎๆฏไปไน๏ผ", 8],
]
# Build Gradio interface
with gr.Blocks(title="Cross-Lingual Retrieval Demo", theme=gr.themes.Soft(primary_hue="purple")) as demo:
gr.Markdown(
"""
# ๐ Cross-Lingual Document Retrieval
### Powered by [LiquidAI/LFM2-ColBERT-350M](https://huggingface.co/LiquidAI/LFM2-ColBERT-350M)
Find semantically similar documents across different languages.
**Supported Languages:** English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish
"""
)
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="๐ Enter your query",
placeholder="E.g., 'artificial intelligence', 'cambio climรกtico', 'energie renouvelable'...",
lines=2
)
top_k_slider = gr.Slider(
minimum=1,
maximum=12,
value=5,
step=1,
label="Number of results to retrieve",
)
search_btn = gr.Button("Search", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown(
"""
### ๐ Document corpus
- ๐ค **Technology** (16 docs): AI, Quantum Computing
- ๐ **Environment** (16 docs): Climate, Biodiversity
- โก **Energy** (8 docs): Renewable Sources
- ๐ฅ **Health** (16 docs): Medicine, Mental Wellness
- ๐ผ **Business** (16 docs): Digital Economy, Startups
- ๐ **Education** (8 docs): Online Learning
- ๐ญ **Culture** (8 docs): Global Connectivity
- ๐ **Science** (8 docs): Space Exploration
"""
)
summary_output = gr.Textbox(
label="๐ Search Summary",
interactive=False,
lines=2
)
results_output = gr.HTML(
label="๐ฏ Search Results"
)
# Event handlers
search_btn.click(
fn=search_documents,
inputs=[query_input, top_k_slider],
outputs=[results_output, summary_output]
)
query_input.submit(
fn=search_documents,
inputs=[query_input, top_k_slider],
outputs=[results_output, summary_output]
)
# Examples section
gr.Examples(
examples=EXAMPLE_QUERIES,
inputs=[query_input, top_k_slider],
outputs=[results_output, summary_output],
fn=search_documents,
cache_examples=False,
)
gr.Markdown(
"""**How it works:** This demo uses the [LiquidAI/LFM2-ColBERT-350M](https://huggingface.co/LiquidAI/LFM2-ColBERT-350M) model with late interaction retrieval.
The model encodes both queries and documents into token-level embeddings, enabling fine-grained matching
across languages with high speed and accuracy."""
)
if __name__ == "__main__":
demo.launch()
|