Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List, Dict, Tuple
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from pylate import indexes, models, retrieve
|
| 5 |
+
|
| 6 |
+
# Configure logging
|
| 7 |
+
logging.basicConfig(
|
| 8 |
+
level=logging.INFO,
|
| 9 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 10 |
+
)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class CrossLingualRetriever:
|
| 15 |
+
"""Cross-lingual retrieval system using LiquidAI's LFM2-ColBERT model."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, model_name: str = "LiquidAI/LFM2-ColBERT-350M-RC"):
|
| 18 |
+
"""Initialize the retriever with model and index."""
|
| 19 |
+
logger.info(f"Loading model: {model_name}")
|
| 20 |
+
|
| 21 |
+
self.model = models.ColBERT(model_name_or_path=model_name)
|
| 22 |
+
|
| 23 |
+
# Set padding token if not present
|
| 24 |
+
if self.model.tokenizer.pad_token is None and hasattr(self.model.tokenizer, "eos_token"):
|
| 25 |
+
self.model.tokenizer.pad_token = self.model.tokenizer.eos_token
|
| 26 |
+
|
| 27 |
+
# Initialize PLAID index
|
| 28 |
+
self.index = indexes.PLAID(
|
| 29 |
+
index_folder="pylate-index",
|
| 30 |
+
index_name="cross_lingual_index",
|
| 31 |
+
override=True,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
self.retriever = retrieve.ColBERT(index=self.index)
|
| 35 |
+
self.documents_data = []
|
| 36 |
+
|
| 37 |
+
logger.info("Model and index initialized successfully")
|
| 38 |
+
|
| 39 |
+
def load_documents(self, documents: List[Dict[str, str]]) -> None:
|
| 40 |
+
"""Load and index multilingual documents."""
|
| 41 |
+
logger.info(f"Loading {len(documents)} documents")
|
| 42 |
+
|
| 43 |
+
self.documents_data = documents
|
| 44 |
+
documents_ids = [doc["id"] for doc in documents]
|
| 45 |
+
documents_text = [doc["text"] for doc in documents]
|
| 46 |
+
|
| 47 |
+
# Encode documents
|
| 48 |
+
documents_embeddings = self.model.encode(
|
| 49 |
+
documents_text,
|
| 50 |
+
batch_size=32,
|
| 51 |
+
is_query=False,
|
| 52 |
+
show_progress_bar=True,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Add to index
|
| 56 |
+
self.index.add_documents(
|
| 57 |
+
documents_ids=documents_ids,
|
| 58 |
+
documents_embeddings=documents_embeddings,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
logger.info("Documents indexed successfully")
|
| 62 |
+
|
| 63 |
+
def search(self, query: str, k: int = 5) -> List[Dict]:
|
| 64 |
+
"""Perform cross-lingual search."""
|
| 65 |
+
logger.info(f"Searching for: {query}")
|
| 66 |
+
|
| 67 |
+
# Encode query
|
| 68 |
+
query_embedding = self.model.encode(
|
| 69 |
+
[query],
|
| 70 |
+
batch_size=32,
|
| 71 |
+
is_query=True,
|
| 72 |
+
show_progress_bar=False,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Retrieve results
|
| 76 |
+
scores = self.retriever.retrieve(
|
| 77 |
+
queries_embeddings=query_embedding,
|
| 78 |
+
k=k,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Format results
|
| 82 |
+
results = []
|
| 83 |
+
for score in scores[0]:
|
| 84 |
+
doc = next((d for d in self.documents_data if d["id"] == score["id"]), None)
|
| 85 |
+
if doc:
|
| 86 |
+
results.append({
|
| 87 |
+
"id": score["id"],
|
| 88 |
+
"score": round(score["score"], 4),
|
| 89 |
+
"text": doc["text"],
|
| 90 |
+
"language": doc["language"],
|
| 91 |
+
"title": doc["title"]
|
| 92 |
+
})
|
| 93 |
+
|
| 94 |
+
return results
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Multilingual document corpus
|
| 98 |
+
MULTILINGUAL_DOCUMENTS = [
|
| 99 |
+
{
|
| 100 |
+
"id": "en_1",
|
| 101 |
+
"language": "English",
|
| 102 |
+
"title": "Artificial Intelligence Overview",
|
| 103 |
+
"text": "Artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning, reasoning, and self-correction."
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"id": "es_1",
|
| 107 |
+
"language": "Spanish",
|
| 108 |
+
"title": "Inteligencia Artificial",
|
| 109 |
+
"text": "La inteligencia artificial es la simulación de procesos de inteligencia humana por parte de máquinas, especialmente sistemas informáticos. Estos procesos incluyen el aprendizaje, el razonamiento y la autocorrección."
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"id": "fr_1",
|
| 113 |
+
"language": "French",
|
| 114 |
+
"title": "Intelligence Artificielle",
|
| 115 |
+
"text": "L'intelligence artificielle est la simulation des processus d'intelligence humaine par des machines, en particulier des systèmes informatiques. Ces processus comprennent l'apprentissage, le raisonnement et l'autocorrection."
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"id": "de_1",
|
| 119 |
+
"language": "German",
|
| 120 |
+
"title": "Künstliche Intelligenz",
|
| 121 |
+
"text": "Künstliche Intelligenz ist die Simulation menschlicher Intelligenzprozesse durch Maschinen, insbesondere Computersysteme. Diese Prozesse umfassen Lernen, Argumentieren und Selbstkorrektur."
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"id": "en_2",
|
| 125 |
+
"language": "English",
|
| 126 |
+
"title": "Climate Change Impact",
|
| 127 |
+
"text": "Climate change refers to long-term shifts in global temperatures and weather patterns. These shifts may be natural, but since the 1800s, human activities have been the main driver of climate change."
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"id": "es_2",
|
| 131 |
+
"language": "Spanish",
|
| 132 |
+
"title": "Cambio Climático",
|
| 133 |
+
"text": "El cambio climático se refiere a cambios a largo plazo en las temperaturas globales y los patrones climáticos. Estos cambios pueden ser naturales, pero desde el siglo XIX, las actividades humanas han sido el principal impulsor del cambio climático."
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"id": "fr_2",
|
| 137 |
+
"language": "French",
|
| 138 |
+
"title": "Changement Climatique",
|
| 139 |
+
"text": "Le changement climatique fait référence aux changements à long terme des températures mondiales et des conditions météorologiques. Ces changements peuvent être naturels, mais depuis les années 1800, les activités humaines sont le principal moteur du changement climatique."
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"id": "zh_1",
|
| 143 |
+
"language": "Chinese",
|
| 144 |
+
"title": "人工智能",
|
| 145 |
+
"text": "人工智能是机器(尤其是计算机系统)对人类智能过程的模拟。这些过程包括学习、推理和自我纠正。"
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"id": "ja_1",
|
| 149 |
+
"language": "Japanese",
|
| 150 |
+
"title": "人工知能",
|
| 151 |
+
"text": "人工知能とは、機械、特にコンピュータシステムによる人間の知能プロセスのシミュレーションです。これらのプロセスには、学習、推論、自己修正が含まれます。"
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"id": "ar_1",
|
| 155 |
+
"language": "Arabic",
|
| 156 |
+
"title": "الذكاء الاصطناعي",
|
| 157 |
+
"text": "الذكاء الاصطناعي هو محاكاة عمليات الذكاء البشري بواسطة الآلات، وخاصة أنظمة الكمبيوتر. تشمل هذه العمليات التعلم والاستدلال والتصحيح الذاتي."
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"id": "en_3",
|
| 161 |
+
"language": "English",
|
| 162 |
+
"title": "Renewable Energy Sources",
|
| 163 |
+
"text": "Renewable energy comes from natural sources that are constantly replenished, such as sunlight, wind, rain, tides, waves, and geothermal heat. These sources are sustainable and environmentally friendly."
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"id": "de_2",
|
| 167 |
+
"language": "German",
|
| 168 |
+
"title": "Erneuerbare Energien",
|
| 169 |
+
"text": "Erneuerbare Energie stammt aus natürlichen Quellen, die ständig nachgefüllt werden, wie Sonnenlicht, Wind, Regen, Gezeiten, Wellen und geothermische Wärme. Diese Quellen sind nachhaltig und umweltfreundlich."
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"id": "pt_1",
|
| 173 |
+
"language": "Portuguese",
|
| 174 |
+
"title": "Energia Renovável",
|
| 175 |
+
"text": "A energia renovável vem de fontes naturais que são constantemente reabastecidas, como luz solar, vento, chuva, marés, ondas e calor geotérmico. Essas fontes são sustentáveis e ambientalmente amigáveis."
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"id": "it_1",
|
| 179 |
+
"language": "Italian",
|
| 180 |
+
"title": "Energia Rinnovabile",
|
| 181 |
+
"text": "L'energia rinnovabile proviene da fonti naturali che vengono costantemente reintegrate, come la luce solare, il vento, la pioggia, le maree, le onde e il calore geotermico. Queste fonti sono sostenibili ed ecologiche."
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"id": "ru_1",
|
| 185 |
+
"language": "Russian",
|
| 186 |
+
"title": "Искусственный Интеллект",
|
| 187 |
+
"text": "Искусственный интеллект - это имитация процессов человеческого интеллекта машинами, особенно компьютерными системами. Эти процессы включают обучение, рассуждение и самокоррекцию."
|
| 188 |
+
},
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# Initialize retriever and load documents
|
| 193 |
+
retriever = CrossLingualRetriever()
|
| 194 |
+
retriever.load_documents(MULTILINGUAL_DOCUMENTS)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def format_results(results: List[Dict]) -> str:
|
| 198 |
+
"""Format search results as HTML for better visualization."""
|
| 199 |
+
if not results:
|
| 200 |
+
return "<div style='padding: 20px; text-align: center; color: #666;'>No results found</div>"
|
| 201 |
+
|
| 202 |
+
html = "<div style='font-family: Arial, sans-serif;'>"
|
| 203 |
+
|
| 204 |
+
for i, result in enumerate(results, 1):
|
| 205 |
+
score_color = "#22c55e" if result["score"] > 30 else "#eab308" if result["score"] > 20 else "#ef4444"
|
| 206 |
+
|
| 207 |
+
html += f"""
|
| 208 |
+
<div style='margin-bottom: 20px; padding: 15px; border: 1px solid #e5e7eb; border-radius: 8px; background: #f9fafb;'>
|
| 209 |
+
<div style='display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;'>
|
| 210 |
+
<div>
|
| 211 |
+
<span style='font-weight: bold; font-size: 16px;'>#{i} {result["title"]}</span>
|
| 212 |
+
<span style='margin-left: 10px; padding: 2px 8px; background: #dbeafe; color: #1e40af; border-radius: 4px; font-size: 12px;'>{result["language"]}</span>
|
| 213 |
+
</div>
|
| 214 |
+
<span style='padding: 4px 12px; background: {score_color}; color: white; border-radius: 4px; font-weight: bold;'>
|
| 215 |
+
Score: {result["score"]}
|
| 216 |
+
</span>
|
| 217 |
+
</div>
|
| 218 |
+
<div style='color: #374151; line-height: 1.6;'>
|
| 219 |
+
{result["text"]}
|
| 220 |
+
</div>
|
| 221 |
+
</div>
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
html += "</div>"
|
| 225 |
+
return html
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def search_documents(query: str, top_k: int) -> Tuple[str, str]:
|
| 229 |
+
"""Search documents and return formatted results."""
|
| 230 |
+
if not query.strip():
|
| 231 |
+
return "", "Please enter a search query."
|
| 232 |
+
|
| 233 |
+
try:
|
| 234 |
+
results = retriever.search(query, k=min(top_k, 10))
|
| 235 |
+
formatted_results = format_results(results)
|
| 236 |
+
|
| 237 |
+
# Create summary
|
| 238 |
+
if results:
|
| 239 |
+
languages_found = set(r["language"] for r in results)
|
| 240 |
+
summary = f"✅ Found {len(results)} relevant documents across {len(languages_found)} language(s): {', '.join(sorted(languages_found))}"
|
| 241 |
+
else:
|
| 242 |
+
summary = "❌ No relevant documents found."
|
| 243 |
+
|
| 244 |
+
return formatted_results, summary
|
| 245 |
+
|
| 246 |
+
except Exception as e:
|
| 247 |
+
logger.error(f"Search error: {e}")
|
| 248 |
+
return "", f"❌ Error during search: {str(e)}"
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
# Example queries in different languages
|
| 252 |
+
EXAMPLE_QUERIES = [
|
| 253 |
+
["What is artificial intelligence?", 5],
|
| 254 |
+
["¿Qué es el cambio climático?", 5],
|
| 255 |
+
["Qu'est-ce que l'énergie renouvelable?", 5],
|
| 256 |
+
["人工知能とは何ですか?", 5],
|
| 257 |
+
["Was ist künstliche Intelligenz?", 3],
|
| 258 |
+
]
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# Build Gradio interface
|
| 262 |
+
with gr.Blocks(title="Cross-Lingual Retrieval Demo", theme=gr.themes.Soft()) as demo:
|
| 263 |
+
gr.Markdown(
|
| 264 |
+
"""
|
| 265 |
+
# 🌍 Cross-Lingual Document Retrieval
|
| 266 |
+
### Powered by LiquidAI/LFM2-ColBERT-350M
|
| 267 |
+
|
| 268 |
+
This demo showcases **cross-lingual retrieval** - search for documents in any language using queries in any language!
|
| 269 |
+
The model finds semantically similar documents regardless of the language mismatch.
|
| 270 |
+
|
| 271 |
+
Try searching in English, Spanish, French, German, Chinese, Japanese, Arabic, or any other language!
|
| 272 |
+
"""
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
with gr.Row():
|
| 276 |
+
with gr.Column(scale=2):
|
| 277 |
+
query_input = gr.Textbox(
|
| 278 |
+
label="🔍 Enter your query (in any language)",
|
| 279 |
+
placeholder="E.g., 'artificial intelligence', 'cambio climático', 'energie renouvelable'...",
|
| 280 |
+
lines=2
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
top_k_slider = gr.Slider(
|
| 284 |
+
minimum=1,
|
| 285 |
+
maximum=10,
|
| 286 |
+
value=5,
|
| 287 |
+
step=1,
|
| 288 |
+
label="Number of results to retrieve",
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
search_btn = gr.Button("Search", variant="primary", size="lg")
|
| 292 |
+
|
| 293 |
+
with gr.Column(scale=1):
|
| 294 |
+
gr.Markdown(
|
| 295 |
+
"""
|
| 296 |
+
### 📚 Available Documents
|
| 297 |
+
|
| 298 |
+
The corpus contains documents about:
|
| 299 |
+
- **Artificial Intelligence**
|
| 300 |
+
- **Climate Change**
|
| 301 |
+
- **Renewable Energy**
|
| 302 |
+
|
| 303 |
+
In languages: 🇬🇧 🇪🇸 🇫🇷 🇩🇪 🇨🇳 🇯🇵 🇸🇦 🇵🇹 🇮🇹 🇷🇺
|
| 304 |
+
"""
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
summary_output = gr.Textbox(
|
| 308 |
+
label="📊 Search Summary",
|
| 309 |
+
interactive=False,
|
| 310 |
+
lines=2
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
results_output = gr.HTML(
|
| 314 |
+
label="🎯 Search Results"
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
# Event handlers
|
| 318 |
+
search_btn.click(
|
| 319 |
+
fn=search_documents,
|
| 320 |
+
inputs=[query_input, top_k_slider],
|
| 321 |
+
outputs=[results_output, summary_output]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
query_input.submit(
|
| 325 |
+
fn=search_documents,
|
| 326 |
+
inputs=[query_input, top_k_slider],
|
| 327 |
+
outputs=[results_output, summary_output]
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# Examples section
|
| 331 |
+
gr.Markdown("### 💡 Try these example queries:")
|
| 332 |
+
gr.Examples(
|
| 333 |
+
examples=EXAMPLE_QUERIES,
|
| 334 |
+
inputs=[query_input, top_k_slider],
|
| 335 |
+
outputs=[results_output, summary_output],
|
| 336 |
+
fn=search_documents,
|
| 337 |
+
cache_examples=False,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
gr.Markdown(
|
| 341 |
+
"""
|
| 342 |
+
---
|
| 343 |
+
**How it works:** This demo uses the LiquidAI LFM2-ColBERT-350M model with late interaction retrieval.
|
| 344 |
+
The model encodes both queries and documents into token-level embeddings, enabling fine-grained matching
|
| 345 |
+
across languages with impressive speed and accuracy.
|
| 346 |
+
|
| 347 |
+
Built with [PyLate](https://github.com/lightonai/pylate) and [Gradio](https://gradio.app).
|
| 348 |
+
"""
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
demo.launch()
|