|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
from typing import List, Optional, Union |
|
|
|
|
|
import numpy as np |
|
|
import PIL.Image |
|
|
import torch |
|
|
from PIL import Image |
|
|
|
|
|
from .configuration_utils import ConfigMixin, register_to_config |
|
|
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate |
|
|
|
|
|
|
|
|
PipelineImageInput = Union[ |
|
|
PIL.Image.Image, |
|
|
np.ndarray, |
|
|
torch.FloatTensor, |
|
|
List[PIL.Image.Image], |
|
|
List[np.ndarray], |
|
|
List[torch.FloatTensor], |
|
|
] |
|
|
|
|
|
|
|
|
class VaeImageProcessor(ConfigMixin): |
|
|
""" |
|
|
Image processor for VAE. |
|
|
|
|
|
Args: |
|
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept |
|
|
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. |
|
|
vae_scale_factor (`int`, *optional*, defaults to `8`): |
|
|
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. |
|
|
resample (`str`, *optional*, defaults to `lanczos`): |
|
|
Resampling filter to use when resizing the image. |
|
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to normalize the image to [-1,1]. |
|
|
do_binarize (`bool`, *optional*, defaults to `False`): |
|
|
Whether to binarize the image to 0/1. |
|
|
do_convert_rgb (`bool`, *optional*, defaults to be `False`): |
|
|
Whether to convert the images to RGB format. |
|
|
do_convert_grayscale (`bool`, *optional*, defaults to be `False`): |
|
|
Whether to convert the images to grayscale format. |
|
|
""" |
|
|
|
|
|
config_name = CONFIG_NAME |
|
|
|
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
do_resize: bool = True, |
|
|
vae_scale_factor: int = 8, |
|
|
resample: str = "lanczos", |
|
|
do_normalize: bool = True, |
|
|
do_binarize: bool = False, |
|
|
do_convert_rgb: bool = False, |
|
|
do_convert_grayscale: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
if do_convert_rgb and do_convert_grayscale: |
|
|
raise ValueError( |
|
|
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`," |
|
|
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.", |
|
|
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`", |
|
|
) |
|
|
self.config.do_convert_rgb = False |
|
|
|
|
|
@staticmethod |
|
|
def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image: |
|
|
""" |
|
|
Convert a numpy image or a batch of images to a PIL image. |
|
|
""" |
|
|
if images.ndim == 3: |
|
|
images = images[None, ...] |
|
|
images = (images * 255).round().astype("uint8") |
|
|
if images.shape[-1] == 1: |
|
|
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
|
else: |
|
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
|
|
return pil_images |
|
|
|
|
|
@staticmethod |
|
|
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: |
|
|
""" |
|
|
Convert a PIL image or a list of PIL images to NumPy arrays. |
|
|
""" |
|
|
if not isinstance(images, list): |
|
|
images = [images] |
|
|
images = [np.array(image).astype(np.float32) / 255.0 for image in images] |
|
|
images = np.stack(images, axis=0) |
|
|
|
|
|
return images |
|
|
|
|
|
@staticmethod |
|
|
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor: |
|
|
""" |
|
|
Convert a NumPy image to a PyTorch tensor. |
|
|
""" |
|
|
if images.ndim == 3: |
|
|
images = images[..., None] |
|
|
|
|
|
images = torch.from_numpy(images.transpose(0, 3, 1, 2)) |
|
|
return images |
|
|
|
|
|
@staticmethod |
|
|
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray: |
|
|
""" |
|
|
Convert a PyTorch tensor to a NumPy image. |
|
|
""" |
|
|
images = images.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
return images |
|
|
|
|
|
@staticmethod |
|
|
def normalize(images): |
|
|
""" |
|
|
Normalize an image array to [-1,1]. |
|
|
""" |
|
|
return 2.0 * images - 1.0 |
|
|
|
|
|
@staticmethod |
|
|
def denormalize(images): |
|
|
""" |
|
|
Denormalize an image array to [0,1]. |
|
|
""" |
|
|
return (images / 2 + 0.5).clamp(0, 1) |
|
|
|
|
|
@staticmethod |
|
|
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: |
|
|
""" |
|
|
Converts a PIL image to RGB format. |
|
|
""" |
|
|
image = image.convert("RGB") |
|
|
|
|
|
return image |
|
|
|
|
|
@staticmethod |
|
|
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image: |
|
|
""" |
|
|
Converts a PIL image to grayscale format. |
|
|
""" |
|
|
image = image.convert("L") |
|
|
|
|
|
return image |
|
|
|
|
|
def get_default_height_width( |
|
|
self, |
|
|
image: [PIL.Image.Image, np.ndarray, torch.Tensor], |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
): |
|
|
""" |
|
|
This function return the height and width that are downscaled to the next integer multiple of |
|
|
`vae_scale_factor`. |
|
|
|
|
|
Args: |
|
|
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`): |
|
|
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have |
|
|
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should |
|
|
have shape `[batch, channel, height, width]`. |
|
|
height (`int`, *optional*, defaults to `None`): |
|
|
The height in preprocessed image. If `None`, will use the height of `image` input. |
|
|
width (`int`, *optional*`, defaults to `None`): |
|
|
The width in preprocessed. If `None`, will use the width of the `image` input. |
|
|
""" |
|
|
|
|
|
if height is None: |
|
|
if isinstance(image, PIL.Image.Image): |
|
|
height = image.height |
|
|
elif isinstance(image, torch.Tensor): |
|
|
height = image.shape[2] |
|
|
else: |
|
|
height = image.shape[1] |
|
|
|
|
|
if width is None: |
|
|
if isinstance(image, PIL.Image.Image): |
|
|
width = image.width |
|
|
elif isinstance(image, torch.Tensor): |
|
|
width = image.shape[3] |
|
|
else: |
|
|
width = image.shape[2] |
|
|
|
|
|
width, height = ( |
|
|
x - x % self.config.vae_scale_factor for x in (width, height) |
|
|
) |
|
|
|
|
|
return height, width |
|
|
|
|
|
def resize( |
|
|
self, |
|
|
image: [PIL.Image.Image, np.ndarray, torch.Tensor], |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
) -> [PIL.Image.Image, np.ndarray, torch.Tensor]: |
|
|
""" |
|
|
Resize image. |
|
|
""" |
|
|
if isinstance(image, PIL.Image.Image): |
|
|
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample]) |
|
|
elif isinstance(image, torch.Tensor): |
|
|
image = torch.nn.functional.interpolate( |
|
|
image, |
|
|
size=(height, width), |
|
|
) |
|
|
elif isinstance(image, np.ndarray): |
|
|
image = self.numpy_to_pt(image) |
|
|
image = torch.nn.functional.interpolate( |
|
|
image, |
|
|
size=(height, width), |
|
|
) |
|
|
image = self.pt_to_numpy(image) |
|
|
return image |
|
|
|
|
|
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: |
|
|
""" |
|
|
create a face_hair_mask |
|
|
""" |
|
|
image[image < 0.5] = 0 |
|
|
image[image >= 0.5] = 1 |
|
|
return image |
|
|
|
|
|
def preprocess( |
|
|
self, |
|
|
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray], |
|
|
height: Optional[int] = None, |
|
|
width: Optional[int] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors. |
|
|
""" |
|
|
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) |
|
|
|
|
|
|
|
|
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3: |
|
|
if isinstance(image, torch.Tensor): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = image.unsqueeze(1) |
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
if image.shape[-1] == 1: |
|
|
image = np.expand_dims(image, axis=0) |
|
|
else: |
|
|
image = np.expand_dims(image, axis=-1) |
|
|
|
|
|
if isinstance(image, supported_formats): |
|
|
image = [image] |
|
|
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)): |
|
|
raise ValueError( |
|
|
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}" |
|
|
) |
|
|
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
|
if self.config.do_convert_rgb: |
|
|
image = [self.convert_to_rgb(i) for i in image] |
|
|
elif self.config.do_convert_grayscale: |
|
|
image = [self.convert_to_grayscale(i) for i in image] |
|
|
if self.config.do_resize: |
|
|
height, width = self.get_default_height_width(image[0], height, width) |
|
|
image = [self.resize(i, height, width) for i in image] |
|
|
image = self.pil_to_numpy(image) |
|
|
image = self.numpy_to_pt(image) |
|
|
|
|
|
elif isinstance(image[0], np.ndarray): |
|
|
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) |
|
|
|
|
|
image = self.numpy_to_pt(image) |
|
|
|
|
|
height, width = self.get_default_height_width(image, height, width) |
|
|
if self.config.do_resize: |
|
|
image = self.resize(image, height, width) |
|
|
|
|
|
elif isinstance(image[0], torch.Tensor): |
|
|
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) |
|
|
|
|
|
if self.config.do_convert_grayscale and image.ndim == 3: |
|
|
image = image.unsqueeze(1) |
|
|
|
|
|
channel = image.shape[1] |
|
|
|
|
|
if channel == 4: |
|
|
return image |
|
|
|
|
|
height, width = self.get_default_height_width(image, height, width) |
|
|
if self.config.do_resize: |
|
|
image = self.resize(image, height, width) |
|
|
|
|
|
|
|
|
do_normalize = self.config.do_normalize |
|
|
if image.min() < 0 and do_normalize: |
|
|
warnings.warn( |
|
|
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " |
|
|
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]", |
|
|
FutureWarning, |
|
|
) |
|
|
do_normalize = False |
|
|
|
|
|
if do_normalize: |
|
|
image = self.normalize(image) |
|
|
|
|
|
if self.config.do_binarize: |
|
|
image = self.binarize(image) |
|
|
|
|
|
return image |
|
|
|
|
|
def postprocess( |
|
|
self, |
|
|
image: torch.FloatTensor, |
|
|
output_type: str = "pil", |
|
|
do_denormalize: Optional[List[bool]] = None, |
|
|
): |
|
|
if not isinstance(image, torch.Tensor): |
|
|
raise ValueError( |
|
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" |
|
|
) |
|
|
if output_type not in ["latent", "pt", "np", "pil"]: |
|
|
deprecation_message = ( |
|
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " |
|
|
"`pil`, `np`, `pt`, `latent`" |
|
|
) |
|
|
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) |
|
|
output_type = "np" |
|
|
|
|
|
if output_type == "latent": |
|
|
return image |
|
|
|
|
|
if do_denormalize is None: |
|
|
do_denormalize = [self.config.do_normalize] * image.shape[0] |
|
|
|
|
|
image = torch.stack( |
|
|
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] |
|
|
) |
|
|
|
|
|
if output_type == "pt": |
|
|
return image |
|
|
|
|
|
image = self.pt_to_numpy(image) |
|
|
|
|
|
if output_type == "np": |
|
|
return image |
|
|
|
|
|
if output_type == "pil": |
|
|
return self.numpy_to_pil(image) |
|
|
|
|
|
|
|
|
class VaeImageProcessorLDM3D(VaeImageProcessor): |
|
|
""" |
|
|
Image processor for VAE LDM3D. |
|
|
|
|
|
Args: |
|
|
do_resize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. |
|
|
vae_scale_factor (`int`, *optional*, defaults to `8`): |
|
|
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. |
|
|
resample (`str`, *optional*, defaults to `lanczos`): |
|
|
Resampling filter to use when resizing the image. |
|
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
|
Whether to normalize the image to [-1,1]. |
|
|
""" |
|
|
|
|
|
config_name = CONFIG_NAME |
|
|
|
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
do_resize: bool = True, |
|
|
vae_scale_factor: int = 8, |
|
|
resample: str = "lanczos", |
|
|
do_normalize: bool = True, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
@staticmethod |
|
|
def numpy_to_pil(images): |
|
|
""" |
|
|
Convert a NumPy image or a batch of images to a PIL image. |
|
|
""" |
|
|
if images.ndim == 3: |
|
|
images = images[None, ...] |
|
|
images = (images * 255).round().astype("uint8") |
|
|
if images.shape[-1] == 1: |
|
|
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
|
else: |
|
|
pil_images = [Image.fromarray(image[:, :, :3]) for image in images] |
|
|
|
|
|
return pil_images |
|
|
|
|
|
@staticmethod |
|
|
def rgblike_to_depthmap(image): |
|
|
""" |
|
|
Args: |
|
|
image: RGB-like depth image |
|
|
|
|
|
Returns: depth map |
|
|
|
|
|
""" |
|
|
return image[:, :, 1] * 2**8 + image[:, :, 2] |
|
|
|
|
|
def numpy_to_depth(self, images): |
|
|
""" |
|
|
Convert a NumPy depth image or a batch of images to a PIL image. |
|
|
""" |
|
|
if images.ndim == 3: |
|
|
images = images[None, ...] |
|
|
images_depth = images[:, :, :, 3:] |
|
|
if images.shape[-1] == 6: |
|
|
images_depth = (images_depth * 255).round().astype("uint8") |
|
|
pil_images = [ |
|
|
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth |
|
|
] |
|
|
elif images.shape[-1] == 4: |
|
|
images_depth = (images_depth * 65535.0).astype(np.uint16) |
|
|
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth] |
|
|
else: |
|
|
raise Exception("Not supported") |
|
|
|
|
|
return pil_images |
|
|
|
|
|
def postprocess( |
|
|
self, |
|
|
image: torch.FloatTensor, |
|
|
output_type: str = "pil", |
|
|
do_denormalize: Optional[List[bool]] = None, |
|
|
): |
|
|
if not isinstance(image, torch.Tensor): |
|
|
raise ValueError( |
|
|
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" |
|
|
) |
|
|
if output_type not in ["latent", "pt", "np", "pil"]: |
|
|
deprecation_message = ( |
|
|
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " |
|
|
"`pil`, `np`, `pt`, `latent`" |
|
|
) |
|
|
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) |
|
|
output_type = "np" |
|
|
|
|
|
if do_denormalize is None: |
|
|
do_denormalize = [self.config.do_normalize] * image.shape[0] |
|
|
|
|
|
image = torch.stack( |
|
|
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] |
|
|
) |
|
|
|
|
|
image = self.pt_to_numpy(image) |
|
|
|
|
|
if output_type == "np": |
|
|
if image.shape[-1] == 6: |
|
|
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0) |
|
|
else: |
|
|
image_depth = image[:, :, :, 3:] |
|
|
return image[:, :, :, :3], image_depth |
|
|
|
|
|
if output_type == "pil": |
|
|
return self.numpy_to_pil(image), self.numpy_to_depth(image) |
|
|
else: |
|
|
raise Exception(f"This type {output_type} is not supported") |
|
|
|