|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
def is_torch2_available(): |
|
|
return hasattr(F, "scaled_dot_product_attention") |
|
|
if is_torch2_available(): |
|
|
from .attention_processor import HairAttnProcessor2_0 as HairAttnProcessor, AttnProcessor2_0 as AttnProcessor |
|
|
else: |
|
|
from .attention_processor import HairAttnProcessor, AttnProcessor |
|
|
|
|
|
def adapter_injection(unet, device="cuda", dtype=torch.float32, use_resampler=False): |
|
|
device = device |
|
|
dtype = dtype |
|
|
|
|
|
attn_procs = {} |
|
|
for name in unet.attn_processors.keys(): |
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
|
if name.startswith("mid_block"): |
|
|
hidden_size = unet.config.block_out_channels[-1] |
|
|
elif name.startswith("up_blocks"): |
|
|
block_id = int(name[len("up_blocks.")]) |
|
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
|
elif name.startswith("down_blocks"): |
|
|
block_id = int(name[len("down_blocks.")]) |
|
|
hidden_size = unet.config.block_out_channels[block_id] |
|
|
if cross_attention_dim is None: |
|
|
attn_procs[name] = HairAttnProcessor(hidden_size=hidden_size, cross_attention_dim=hidden_size, scale=1, use_resampler=use_resampler).to(device, dtype=dtype) |
|
|
else: |
|
|
attn_procs[name] = AttnProcessor() |
|
|
unet.set_attn_processor(attn_procs) |
|
|
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) |
|
|
adapter_layers = adapter_modules |
|
|
adapter_layers.to(device, dtype=dtype) |
|
|
return adapter_layers |
|
|
|
|
|
def set_scale(unet, scale): |
|
|
for attn_processor in unet.attn_processors.values(): |
|
|
if isinstance(attn_processor, HairAttnProcessor): |
|
|
attn_processor.scale = scale |