Hair_stable_new / server.py
LogicGoInfotechSpaces's picture
fix: resolve MongoDB collection boolean check errors
a7bdd75
import io
import os
import uuid
import logging
from typing import Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Header
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
import torch
import numpy as np
from PIL import Image
# Lazy import performed in get_model() to avoid import-time failures on Space
# Import MongoDB logging
from mongodb_logging import setup_mongodb_logging, get_logs_from_mongodb, clear_logs_from_mongodb
EXPECTED_BEARER = "logicgo@123"
# Optional Mongo persistence
from pymongo import MongoClient
MONGO_URI = os.environ.get("MONGO_URI", "")
mongo_client = MongoClient(MONGO_URI) if MONGO_URI else None
mongo_db = mongo_client.get_database("HairSwapDB") if mongo_client is not None else None
uploads_col = mongo_db.get_collection("uploads") if mongo_db is not None else None
results_col = mongo_db.get_collection("results") if mongo_db is not None else None
logs_col = mongo_db.get_collection("logs") if mongo_db is not None else None
# Setup MongoDB logging
if MONGO_URI:
setup_mongodb_logging(MONGO_URI, "HairSwapDB", "logs")
LOGGER = logging.getLogger("hair_server")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")
def verify_bearer(authorization: Optional[str] = Header(None)):
if not authorization:
raise HTTPException(status_code=401, detail="Missing Authorization header")
try:
scheme, token = authorization.split(" ", 1)
except ValueError:
raise HTTPException(status_code=401, detail="Invalid Authorization header format")
if scheme.lower() != "bearer":
raise HTTPException(status_code=401, detail="Invalid auth scheme")
if token != EXPECTED_BEARER:
raise HTTPException(status_code=401, detail="Invalid token")
return True
app = FastAPI(title="Hair Swap API", version="1.0.0")
@app.get("/health")
def health():
return {"status": "healthy"}
@app.get("/")
def root():
return {"status": "ok"}
class HairSwapRequest(BaseModel):
source_id: str
reference_id: str
converter_scale: float = 1.0
scale: float = 1.0
guidance_scale: float = 1.5
controlnet_conditioning_scale: float = 1.0
# Initialize model lazily on first request
_model = None # type: ignore[assignment]
def get_model():
global _model
if _model is None:
try:
LOGGER.info("Loading StableHair model ...")
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
LOGGER.info(f"Using device: {device}, dtype: {dtype}")
# Ensure HF token env var is where downstream libs expect it
if os.environ.get("HUGGINGFACEHUB_API_TOKEN") and not os.environ.get("HUGGINGFACE_HUB_TOKEN"):
os.environ["HUGGINGFACE_HUB_TOKEN"] = os.environ["HUGGINGFACEHUB_API_TOKEN"]
# Backward-compat shim: some diffusers versions import a helper only present in newer hub versions.
try:
import huggingface_hub as _hfh # type: ignore
if not hasattr(_hfh, "split_torch_state_dict_into_shards"):
def _split_torch_state_dict_into_shards(state_dict, max_shard_size="10GB"):
# Minimal shim: return a single shard mapping expected by callers
return {"pytorch_model.bin": state_dict}
_hfh.split_torch_state_dict_into_shards = _split_torch_state_dict_into_shards # type: ignore[attr-defined]
except Exception:
pass
# Import here to defer importing diffusers/transformers until needed
from infer_full import StableHair # noqa: WPS433
_model = StableHair(config="./configs/hair_transfer.yaml", device=device, weight_dtype=dtype)
LOGGER.info("Model loaded successfully")
except Exception as e:
LOGGER.error(f"Failed to load model: {str(e)}")
raise Exception(f"Model loading failed: {str(e)}")
return _model
# Use a writable location on Hugging Face Spaces
BASE_DATA_DIR = os.environ.get("DATA_DIR", "/data")
UPLOAD_DIR = os.path.join(BASE_DATA_DIR, "uploads")
RESULTS_DIR = os.path.join(BASE_DATA_DIR, "results")
LOGS_DIR = os.path.join(BASE_DATA_DIR, "logs")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
if not image.filename:
raise HTTPException(status_code=400, detail="No file name provided")
contents = await image.read()
try:
Image.open(io.BytesIO(contents)).convert("RGB")
except Exception:
raise HTTPException(status_code=400, detail="Invalid image file")
image_id = str(uuid.uuid4())
ext = os.path.splitext(image.filename)[1] or ".png"
path = os.path.join(UPLOAD_DIR, image_id + ext)
with open(path, "wb") as f:
f.write(contents)
# Save metadata to Mongo
if uploads_col is not None:
try:
uploads_col.insert_one({"_id": image_id, "filename": os.path.basename(path), "path": path})
except Exception:
pass
return {"id": image_id, "filename": os.path.basename(path)}
@app.post("/get-hairswap")
def get_hairswap(req: HairSwapRequest):
try:
# Resolve file paths
def find_file(image_id: str) -> str:
for name in os.listdir(UPLOAD_DIR):
if name.startswith(image_id):
return os.path.join(UPLOAD_DIR, name)
raise HTTPException(status_code=404, detail=f"Image id not found: {image_id}")
source_path = find_file(req.source_id)
reference_path = find_file(req.reference_id)
LOGGER.info(f"Found source: {source_path}, reference: {reference_path}")
# Load model with error handling
try:
model = get_model()
LOGGER.info("Model loaded successfully")
except Exception as e:
LOGGER.error(f"Model loading failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Model loading failed: {str(e)}")
# Perform hair transfer with error handling
try:
LOGGER.info("Starting hair transfer...")
id_np, out_np, bald_np, ref_np = model.Hair_Transfer(
source_image=source_path,
reference_image=reference_path,
random_seed=-1,
step=30,
guidance_scale=req.guidance_scale,
scale=req.scale,
controlnet_conditioning_scale=req.controlnet_conditioning_scale,
size=512,
)
LOGGER.info("Hair transfer completed successfully")
except Exception as e:
import traceback
tb = traceback.format_exc()
LOGGER.error(f"Hair transfer failed: {str(e)} | device={model.device if hasattr(model, 'device') else 'n/a'} cuda_available={torch.cuda.is_available()}\n{tb}")
raise HTTPException(status_code=500, detail=f"Hair transfer failed: {str(e)}")
# Save result
try:
result_id = str(uuid.uuid4())
out_img = Image.fromarray((out_np * 255.).astype(np.uint8))
filename = f"{result_id}.png"
out_path = os.path.join(RESULTS_DIR, filename)
out_img.save(out_path)
LOGGER.info(f"Result saved: {out_path}")
if results_col is not None:
try:
results_col.insert_one({
"_id": result_id,
"filename": filename,
"path": out_path,
"source_id": req.source_id,
"reference_id": req.reference_id,
})
except Exception as e:
LOGGER.warning(f"MongoDB save failed: {str(e)}")
return {"result": filename}
except Exception as e:
LOGGER.error(f"Result saving failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Result saving failed: {str(e)}")
except HTTPException:
raise
except Exception as e:
LOGGER.error(f"Unexpected error in get_hairswap: {str(e)}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
@app.get("/download/{filename}")
def download(filename: str):
path = os.path.join(RESULTS_DIR, filename)
if not os.path.exists(path):
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(path, media_type="image/png", filename=filename)
@app.get("/logs")
def logs(limit: int = 50, level: str = None, logger_name: str = None):
"""Get logs from MongoDB including both metadata and application logs"""
response_data = {}
# Get metadata (uploads and results)
if uploads_col is not None and results_col is not None:
uploads = list(uploads_col.find({}, {"_id": 1, "filename": 1}).limit(20))
results = list(results_col.find({}, {"_id": 1, "filename": 1, "source_id": 1, "reference_id": 1}).limit(20))
response_data["metadata"] = {"uploads": uploads, "results": results}
else:
response_data["metadata"] = {"uploads": [], "results": []}
# Get application logs from MongoDB
if MONGO_URI:
try:
app_logs = get_logs_from_mongodb(MONGO_URI, "HairSwapDB", "logs", limit, level, logger_name)
response_data["application_logs"] = app_logs
response_data["mongodb_status"] = "connected"
except Exception as e:
response_data["application_logs"] = []
response_data["mongodb_status"] = f"error: {str(e)}"
else:
response_data["application_logs"] = []
response_data["mongodb_status"] = "not_configured"
return JSONResponse(response_data)
@app.get("/logs/clear")
def clear_logs(days_older_than: int = None):
"""Clear old logs from MongoDB"""
if not MONGO_URI:
raise HTTPException(status_code=400, detail="MongoDB not configured")
try:
deleted_count = clear_logs_from_mongodb(MONGO_URI, "HairSwapDB", "logs", days_older_than)
return JSONResponse({
"message": f"Cleared {deleted_count} logs",
"days_older_than": days_older_than
})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to clear logs: {str(e)}")
@app.get("/logs/stats")
def logs_stats():
"""Get logging statistics"""
if not MONGO_URI:
return JSONResponse({"mongodb_status": "not_configured"})
try:
client = MongoClient(MONGO_URI)
db = client.get_database("HairSwapDB")
logs_collection = db.get_collection("logs")
# Get total count
total_logs = logs_collection.count_documents({})
# Get count by level
pipeline = [
{"$group": {"_id": "$level", "count": {"$sum": 1}}},
{"$sort": {"count": -1}}
]
logs_by_level = list(logs_collection.aggregate(pipeline))
# Get count by logger
pipeline = [
{"$group": {"_id": "$logger", "count": {"$sum": 1}}},
{"$sort": {"count": -1}},
{"$limit": 10}
]
logs_by_logger = list(logs_collection.aggregate(pipeline))
return JSONResponse({
"total_logs": total_logs,
"logs_by_level": logs_by_level,
"top_loggers": logs_by_logger,
"mongodb_status": "connected"
})
except Exception as e:
return JSONResponse({
"mongodb_status": f"error: {str(e)}",
"total_logs": 0
})