Commit
·
3936786
1
Parent(s):
f01916f
fix(space): expose FastAPI app from server.py to avoid diffusers mixin import
Browse files
app.py
CHANGED
|
@@ -1,185 +1 @@
|
|
| 1 |
-
|
| 2 |
-
import gradio as gr
|
| 3 |
-
except Exception:
|
| 4 |
-
gr = None
|
| 5 |
-
import torch
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import numpy as np
|
| 8 |
-
from PIL import Image
|
| 9 |
-
from omegaconf import OmegaConf
|
| 10 |
-
import os
|
| 11 |
-
import cv2
|
| 12 |
-
from diffusers import DDIMScheduler, UniPCMultistepScheduler
|
| 13 |
-
from diffusers.models import UNet2DConditionModel
|
| 14 |
-
from ref_encoder.latent_controlnet import ControlNetModel
|
| 15 |
-
from ref_encoder.adapter import *
|
| 16 |
-
from ref_encoder.reference_unet import ref_unet
|
| 17 |
-
from utils.pipeline import StableHairPipeline
|
| 18 |
-
from utils.pipeline_cn import StableDiffusionControlNetPipeline
|
| 19 |
-
from huggingface_hub import hf_hub_download
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class StableHair:
|
| 23 |
-
def __init__(self, config="./configs/hair_transfer.yaml", device="cuda", weight_dtype=torch.float32) -> None:
|
| 24 |
-
print("Initializing Stable Hair Pipeline...")
|
| 25 |
-
self.config = OmegaConf.load(config)
|
| 26 |
-
self.device = device
|
| 27 |
-
|
| 28 |
-
# Hugging Face repo with weights
|
| 29 |
-
repo_id = "LogicGoInfotechSpaces/new_weights"
|
| 30 |
-
|
| 31 |
-
# Map config paths to Hugging Face repo structure
|
| 32 |
-
# Based on config: pretrained_folder: "./models/stage2"
|
| 33 |
-
# encoder_path: "pytorch_model.bin" -> stage2/pytorch_model.bin
|
| 34 |
-
# adapter_path: "pytorch_model_1.bin" -> stage2/pytorch_model_1.bin
|
| 35 |
-
# controlnet_path: "pytorch_model_2.bin" -> stage2/pytorch_model_2.bin
|
| 36 |
-
# bald_converter_path: "./models/stage1/pytorch_model.bin" -> stage1/pytorch_model.bin
|
| 37 |
-
|
| 38 |
-
# Download weights from Hugging Face
|
| 39 |
-
encoder_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model.bin")
|
| 40 |
-
adapter_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model_1.bin")
|
| 41 |
-
controlnet_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model_2.bin")
|
| 42 |
-
bald_converter_hf_path = hf_hub_download(repo_id=repo_id, filename="stage1/pytorch_model.bin")
|
| 43 |
-
|
| 44 |
-
### Load vae controlnet
|
| 45 |
-
unet = UNet2DConditionModel.from_pretrained(self.config.pretrained_model_path, subfolder="unet").to(device)
|
| 46 |
-
controlnet = ControlNetModel.from_unet(unet).to(device)
|
| 47 |
-
_state_dict = torch.load(controlnet_hf_path, map_location="cpu")
|
| 48 |
-
controlnet.load_state_dict(_state_dict, strict=False)
|
| 49 |
-
controlnet.to(weight_dtype)
|
| 50 |
-
|
| 51 |
-
### >>> create pipeline >>> ###
|
| 52 |
-
self.pipeline = StableHairPipeline.from_pretrained(
|
| 53 |
-
self.config.pretrained_model_path,
|
| 54 |
-
controlnet=controlnet,
|
| 55 |
-
safety_checker=None,
|
| 56 |
-
torch_dtype=weight_dtype,
|
| 57 |
-
).to(device)
|
| 58 |
-
self.pipeline.scheduler = DDIMScheduler.from_config(self.pipeline.scheduler.config)
|
| 59 |
-
|
| 60 |
-
### load Hair encoder/adapter
|
| 61 |
-
self.hair_encoder = ref_unet.from_pretrained(self.config.pretrained_model_path, subfolder="unet").to(device)
|
| 62 |
-
_state_dict = torch.load(encoder_hf_path, map_location="cpu")
|
| 63 |
-
self.hair_encoder.load_state_dict(_state_dict, strict=False)
|
| 64 |
-
self.hair_adapter = adapter_injection(self.pipeline.unet, device=self.device, dtype=torch.float16, use_resampler=False)
|
| 65 |
-
_state_dict = torch.load(adapter_hf_path, map_location="cpu")
|
| 66 |
-
self.hair_adapter.load_state_dict(_state_dict, strict=False)
|
| 67 |
-
|
| 68 |
-
### load bald converter
|
| 69 |
-
bald_converter = ControlNetModel.from_unet(unet).to(device)
|
| 70 |
-
_state_dict = torch.load(bald_converter_hf_path, map_location="cpu")
|
| 71 |
-
bald_converter.load_state_dict(_state_dict, strict=False)
|
| 72 |
-
bald_converter.to(dtype=weight_dtype)
|
| 73 |
-
del unet
|
| 74 |
-
|
| 75 |
-
### create pipeline for hair removal
|
| 76 |
-
self.remove_hair_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
| 77 |
-
self.config.pretrained_model_path,
|
| 78 |
-
controlnet=bald_converter,
|
| 79 |
-
safety_checker=None,
|
| 80 |
-
torch_dtype=weight_dtype,
|
| 81 |
-
)
|
| 82 |
-
self.remove_hair_pipeline.scheduler = UniPCMultistepScheduler.from_config(self.remove_hair_pipeline.scheduler.config)
|
| 83 |
-
self.remove_hair_pipeline = self.remove_hair_pipeline.to(device)
|
| 84 |
-
|
| 85 |
-
### move to fp16
|
| 86 |
-
self.hair_encoder.to(weight_dtype)
|
| 87 |
-
self.hair_adapter.to(weight_dtype)
|
| 88 |
-
|
| 89 |
-
print("Initialization Done!")
|
| 90 |
-
|
| 91 |
-
def Hair_Transfer(self, source_image, reference_image, random_seed, step, guidance_scale, scale, controlnet_conditioning_scale):
|
| 92 |
-
prompt = ""
|
| 93 |
-
n_prompt = ""
|
| 94 |
-
random_seed = int(random_seed)
|
| 95 |
-
step = int(step)
|
| 96 |
-
guidance_scale = float(guidance_scale)
|
| 97 |
-
scale = float(scale)
|
| 98 |
-
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
|
| 99 |
-
|
| 100 |
-
# load imgs
|
| 101 |
-
H, W, C = source_image.shape
|
| 102 |
-
|
| 103 |
-
# generate images
|
| 104 |
-
set_scale(self.pipeline.unet, scale)
|
| 105 |
-
generator = torch.Generator(device="cuda")
|
| 106 |
-
generator.manual_seed(random_seed)
|
| 107 |
-
sample = self.pipeline(
|
| 108 |
-
prompt,
|
| 109 |
-
negative_prompt=n_prompt,
|
| 110 |
-
num_inference_steps=step,
|
| 111 |
-
guidance_scale=guidance_scale,
|
| 112 |
-
width=W,
|
| 113 |
-
height=H,
|
| 114 |
-
controlnet_condition=source_image,
|
| 115 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 116 |
-
generator=generator,
|
| 117 |
-
reference_encoder=self.hair_encoder,
|
| 118 |
-
ref_image=reference_image,
|
| 119 |
-
).samples
|
| 120 |
-
return sample, source_image, reference_image
|
| 121 |
-
|
| 122 |
-
def get_bald(self, id_image, scale):
|
| 123 |
-
H, W = id_image.size
|
| 124 |
-
scale = float(scale)
|
| 125 |
-
image = self.remove_hair_pipeline(
|
| 126 |
-
prompt="",
|
| 127 |
-
negative_prompt="",
|
| 128 |
-
num_inference_steps=30,
|
| 129 |
-
guidance_scale=1.5,
|
| 130 |
-
width=W,
|
| 131 |
-
height=H,
|
| 132 |
-
image=id_image,
|
| 133 |
-
controlnet_conditioning_scale=scale,
|
| 134 |
-
generator=None,
|
| 135 |
-
).images[0]
|
| 136 |
-
|
| 137 |
-
return image
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
model = StableHair(config="./configs/hair_transfer.yaml", weight_dtype=torch.float32)
|
| 141 |
-
|
| 142 |
-
# Define your ML model or function here
|
| 143 |
-
def model_call(id_image, ref_hair, converter_scale, scale, guidance_scale, controlnet_conditioning_scale):
|
| 144 |
-
# # Your ML logic goes here
|
| 145 |
-
id_image = Image.fromarray(id_image.astype('uint8'), 'RGB')
|
| 146 |
-
ref_hair = Image.fromarray(ref_hair.astype('uint8'), 'RGB')
|
| 147 |
-
id_image = id_image.resize((512, 512))
|
| 148 |
-
ref_hair = ref_hair.resize((512, 512))
|
| 149 |
-
id_image_bald = model.get_bald(id_image, converter_scale)
|
| 150 |
-
|
| 151 |
-
id_image_bald = np.array(id_image_bald)
|
| 152 |
-
ref_hair = np.array(ref_hair)
|
| 153 |
-
|
| 154 |
-
image, source_image, reference_image = model.Hair_Transfer(source_image=id_image_bald,
|
| 155 |
-
reference_image=ref_hair,
|
| 156 |
-
random_seed=-1,
|
| 157 |
-
step=30,
|
| 158 |
-
guidance_scale=guidance_scale,
|
| 159 |
-
scale=scale,
|
| 160 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
image = Image.fromarray((image * 255.).astype(np.uint8))
|
| 164 |
-
return id_image_bald, image
|
| 165 |
-
|
| 166 |
-
# Create a Gradio interface
|
| 167 |
-
if gr is not None:
|
| 168 |
-
iface = gr.Interface(
|
| 169 |
-
fn=model_call,
|
| 170 |
-
inputs=[
|
| 171 |
-
gr.Image(label="ID Image"),
|
| 172 |
-
gr.Image(label="Reference Hair"),
|
| 173 |
-
gr.Slider(minimum=0.5, maximum=1.5, value=1, label="Converter Scale"),
|
| 174 |
-
gr.Slider(minimum=0.0, maximum=3.0, value=1.0, label="Hair Encoder Scale"),
|
| 175 |
-
gr.Slider(minimum=1.1, maximum=3.0, value=1.5, label="CFG"),
|
| 176 |
-
gr.Slider(minimum=0.1, maximum=2.0, value=1, label="Latent IdentityNet Scale"),
|
| 177 |
-
],
|
| 178 |
-
outputs=[
|
| 179 |
-
gr.Image(type="pil", label="Bald Result"),
|
| 180 |
-
gr.Image(type="pil", label="Transfer Result"),
|
| 181 |
-
],
|
| 182 |
-
title="Hair Transfer Demo",
|
| 183 |
-
description="In general, aligned faces work well, but can also be used on non-aligned faces, and you need to resize to 512 * 512"
|
| 184 |
-
)
|
| 185 |
-
iface.queue().launch(server_name='0.0.0.0', server_port=7860, share=True)
|
|
|
|
| 1 |
+
from server import app # Hugging Face Spaces will import app:app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|