Commit
·
7e328d3
1
Parent(s):
ef6f7fd
ip
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- LICENSE +201 -0
- app.py +183 -0
- configs/hair_transfer.yaml +22 -0
- default_config.yaml +16 -0
- diffusers/.DS_Store +0 -0
- diffusers/__init__.py +734 -0
- diffusers/commands/__init__.py +27 -0
- diffusers/commands/diffusers_cli.py +43 -0
- diffusers/commands/env.py +84 -0
- diffusers/commands/fp16_safetensors.py +133 -0
- diffusers/configuration_utils.py +694 -0
- diffusers/dependency_versions_check.py +35 -0
- diffusers/dependency_versions_table.py +46 -0
- diffusers/experimental/README.md +5 -0
- diffusers/experimental/__init__.py +1 -0
- diffusers/experimental/rl/__init__.py +1 -0
- diffusers/experimental/rl/value_guided_sampling.py +154 -0
- diffusers/image_processor.py +476 -0
- diffusers/loaders.py +0 -0
- diffusers/models/README.md +3 -0
- diffusers/models/__init__.py +77 -0
- diffusers/models/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/__init__.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/activations.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/activations.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/activations.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/attention.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/attention.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/attention.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/attention_processor.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/attention_processor.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/attention_processor.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_asym_kl.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_asym_kl.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_asym_kl.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_kl.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/autoencoder_kl.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/controlnet.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/controlnet.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/controlnet.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/dual_transformer_2d.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/dual_transformer_2d.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/embeddings.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/embeddings.cpython-38.pyc +0 -0
- diffusers/models/__pycache__/embeddings.cpython-39.pyc +0 -0
- diffusers/models/__pycache__/lora.cpython-310.pyc +0 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
app.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from omegaconf import OmegaConf
|
| 7 |
+
import os
|
| 8 |
+
import cv2
|
| 9 |
+
from diffusers import DDIMScheduler, UniPCMultistepScheduler
|
| 10 |
+
from diffusers.models import UNet2DConditionModel
|
| 11 |
+
from ref_encoder.latent_controlnet import ControlNetModel
|
| 12 |
+
from ref_encoder.adapter import *
|
| 13 |
+
from ref_encoder.reference_unet import ref_unet
|
| 14 |
+
from utils.pipeline import StableHairPipeline
|
| 15 |
+
from utils.pipeline_cn import StableDiffusionControlNetPipeline
|
| 16 |
+
from huggingface_hub import hf_hub_download
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class StableHair:
|
| 20 |
+
def __init__(self, config="./configs/hair_transfer.yaml", device="cuda", weight_dtype=torch.float32) -> None:
|
| 21 |
+
print("Initializing Stable Hair Pipeline...")
|
| 22 |
+
self.config = OmegaConf.load(config)
|
| 23 |
+
self.device = device
|
| 24 |
+
|
| 25 |
+
# Hugging Face repo with weights
|
| 26 |
+
repo_id = "LogicGoInfotechSpaces/new_weights"
|
| 27 |
+
|
| 28 |
+
# Map config paths to Hugging Face repo structure
|
| 29 |
+
# Based on config: pretrained_folder: "./models/stage2"
|
| 30 |
+
# encoder_path: "pytorch_model.bin" -> stage2/pytorch_model.bin
|
| 31 |
+
# adapter_path: "pytorch_model_1.bin" -> stage2/pytorch_model_1.bin
|
| 32 |
+
# controlnet_path: "pytorch_model_2.bin" -> stage2/pytorch_model_2.bin
|
| 33 |
+
# bald_converter_path: "./models/stage1/pytorch_model.bin" -> stage1/pytorch_model.bin
|
| 34 |
+
|
| 35 |
+
# Download weights from Hugging Face
|
| 36 |
+
encoder_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model.bin")
|
| 37 |
+
adapter_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model_1.bin")
|
| 38 |
+
controlnet_hf_path = hf_hub_download(repo_id=repo_id, filename="stage2/pytorch_model_2.bin")
|
| 39 |
+
bald_converter_hf_path = hf_hub_download(repo_id=repo_id, filename="stage1/pytorch_model.bin")
|
| 40 |
+
|
| 41 |
+
### Load vae controlnet
|
| 42 |
+
unet = UNet2DConditionModel.from_pretrained(self.config.pretrained_model_path, subfolder="unet").to(device)
|
| 43 |
+
controlnet = ControlNetModel.from_unet(unet).to(device)
|
| 44 |
+
_state_dict = torch.load(controlnet_hf_path, map_location="cpu")
|
| 45 |
+
controlnet.load_state_dict(_state_dict, strict=False)
|
| 46 |
+
controlnet.to(weight_dtype)
|
| 47 |
+
|
| 48 |
+
### >>> create pipeline >>> ###
|
| 49 |
+
self.pipeline = StableHairPipeline.from_pretrained(
|
| 50 |
+
self.config.pretrained_model_path,
|
| 51 |
+
controlnet=controlnet,
|
| 52 |
+
safety_checker=None,
|
| 53 |
+
torch_dtype=weight_dtype,
|
| 54 |
+
).to(device)
|
| 55 |
+
self.pipeline.scheduler = DDIMScheduler.from_config(self.pipeline.scheduler.config)
|
| 56 |
+
|
| 57 |
+
### load Hair encoder/adapter
|
| 58 |
+
self.hair_encoder = ref_unet.from_pretrained(self.config.pretrained_model_path, subfolder="unet").to(device)
|
| 59 |
+
_state_dict = torch.load(encoder_hf_path, map_location="cpu")
|
| 60 |
+
self.hair_encoder.load_state_dict(_state_dict, strict=False)
|
| 61 |
+
self.hair_adapter = adapter_injection(self.pipeline.unet, device=self.device, dtype=torch.float16, use_resampler=False)
|
| 62 |
+
_state_dict = torch.load(adapter_hf_path, map_location="cpu")
|
| 63 |
+
self.hair_adapter.load_state_dict(_state_dict, strict=False)
|
| 64 |
+
|
| 65 |
+
### load bald converter
|
| 66 |
+
bald_converter = ControlNetModel.from_unet(unet).to(device)
|
| 67 |
+
_state_dict = torch.load(bald_converter_hf_path, map_location="cpu")
|
| 68 |
+
bald_converter.load_state_dict(_state_dict, strict=False)
|
| 69 |
+
bald_converter.to(dtype=weight_dtype)
|
| 70 |
+
del unet
|
| 71 |
+
|
| 72 |
+
### create pipeline for hair removal
|
| 73 |
+
self.remove_hair_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
| 74 |
+
self.config.pretrained_model_path,
|
| 75 |
+
controlnet=bald_converter,
|
| 76 |
+
safety_checker=None,
|
| 77 |
+
torch_dtype=weight_dtype,
|
| 78 |
+
)
|
| 79 |
+
self.remove_hair_pipeline.scheduler = UniPCMultistepScheduler.from_config(self.remove_hair_pipeline.scheduler.config)
|
| 80 |
+
self.remove_hair_pipeline = self.remove_hair_pipeline.to(device)
|
| 81 |
+
|
| 82 |
+
### move to fp16
|
| 83 |
+
self.hair_encoder.to(weight_dtype)
|
| 84 |
+
self.hair_adapter.to(weight_dtype)
|
| 85 |
+
|
| 86 |
+
print("Initialization Done!")
|
| 87 |
+
|
| 88 |
+
def Hair_Transfer(self, source_image, reference_image, random_seed, step, guidance_scale, scale, controlnet_conditioning_scale):
|
| 89 |
+
prompt = ""
|
| 90 |
+
n_prompt = ""
|
| 91 |
+
random_seed = int(random_seed)
|
| 92 |
+
step = int(step)
|
| 93 |
+
guidance_scale = float(guidance_scale)
|
| 94 |
+
scale = float(scale)
|
| 95 |
+
controlnet_conditioning_scale = float(controlnet_conditioning_scale)
|
| 96 |
+
|
| 97 |
+
# load imgs
|
| 98 |
+
H, W, C = source_image.shape
|
| 99 |
+
|
| 100 |
+
# generate images
|
| 101 |
+
set_scale(self.pipeline.unet, scale)
|
| 102 |
+
generator = torch.Generator(device="cuda")
|
| 103 |
+
generator.manual_seed(random_seed)
|
| 104 |
+
sample = self.pipeline(
|
| 105 |
+
prompt,
|
| 106 |
+
negative_prompt=n_prompt,
|
| 107 |
+
num_inference_steps=step,
|
| 108 |
+
guidance_scale=guidance_scale,
|
| 109 |
+
width=W,
|
| 110 |
+
height=H,
|
| 111 |
+
controlnet_condition=source_image,
|
| 112 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 113 |
+
generator=generator,
|
| 114 |
+
reference_encoder=self.hair_encoder,
|
| 115 |
+
ref_image=reference_image,
|
| 116 |
+
).samples
|
| 117 |
+
return sample, source_image, reference_image
|
| 118 |
+
|
| 119 |
+
def get_bald(self, id_image, scale):
|
| 120 |
+
H, W = id_image.size
|
| 121 |
+
scale = float(scale)
|
| 122 |
+
image = self.remove_hair_pipeline(
|
| 123 |
+
prompt="",
|
| 124 |
+
negative_prompt="",
|
| 125 |
+
num_inference_steps=30,
|
| 126 |
+
guidance_scale=1.5,
|
| 127 |
+
width=W,
|
| 128 |
+
height=H,
|
| 129 |
+
image=id_image,
|
| 130 |
+
controlnet_conditioning_scale=scale,
|
| 131 |
+
generator=None,
|
| 132 |
+
).images[0]
|
| 133 |
+
|
| 134 |
+
return image
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
model = StableHair(config="./configs/hair_transfer.yaml", weight_dtype=torch.float32)
|
| 138 |
+
|
| 139 |
+
# Define your ML model or function here
|
| 140 |
+
def model_call(id_image, ref_hair, converter_scale, scale, guidance_scale, controlnet_conditioning_scale):
|
| 141 |
+
# # Your ML logic goes here
|
| 142 |
+
id_image = Image.fromarray(id_image.astype('uint8'), 'RGB')
|
| 143 |
+
ref_hair = Image.fromarray(ref_hair.astype('uint8'), 'RGB')
|
| 144 |
+
id_image = id_image.resize((512, 512))
|
| 145 |
+
ref_hair = ref_hair.resize((512, 512))
|
| 146 |
+
id_image_bald = model.get_bald(id_image, converter_scale)
|
| 147 |
+
|
| 148 |
+
id_image_bald = np.array(id_image_bald)
|
| 149 |
+
ref_hair = np.array(ref_hair)
|
| 150 |
+
|
| 151 |
+
image, source_image, reference_image = model.Hair_Transfer(source_image=id_image_bald,
|
| 152 |
+
reference_image=ref_hair,
|
| 153 |
+
random_seed=-1,
|
| 154 |
+
step=30,
|
| 155 |
+
guidance_scale=guidance_scale,
|
| 156 |
+
scale=scale,
|
| 157 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
image = Image.fromarray((image * 255.).astype(np.uint8))
|
| 161 |
+
return id_image_bald, image
|
| 162 |
+
|
| 163 |
+
# Create a Gradio interface
|
| 164 |
+
iface = gr.Interface(
|
| 165 |
+
fn=model_call,
|
| 166 |
+
inputs=[
|
| 167 |
+
gr.Image(label="ID Image"),
|
| 168 |
+
gr.Image(label="Reference Hair"),
|
| 169 |
+
gr.Slider(minimum=0.5, maximum=1.5, value=1, label="Converter Scale"),
|
| 170 |
+
gr.Slider(minimum=0.0, maximum=3.0, value=1.0, label="Hair Encoder Scale"),
|
| 171 |
+
gr.Slider(minimum=1.1, maximum=3.0, value=1.5, label="CFG"),
|
| 172 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=1, label="Latent IdentityNet Scale"),
|
| 173 |
+
],
|
| 174 |
+
outputs=[
|
| 175 |
+
gr.Image(type="pil", label="Bald Result"),
|
| 176 |
+
gr.Image(type="pil", label="Transfer Result"),
|
| 177 |
+
],
|
| 178 |
+
title="Hair Transfer Demo",
|
| 179 |
+
description="In general, aligned faces work well, but can also be used on non-aligned faces, and you need to resize to 512 * 512"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Launch the Gradio interface
|
| 183 |
+
iface.queue().launch(server_name='0.0.0.0', server_port=7860, share=True)
|
configs/hair_transfer.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pretrained_model_path: "runwayml/stable-diffusion-v1-5" # your sd path
|
| 2 |
+
|
| 3 |
+
pretrained_folder: "./models/stage2"
|
| 4 |
+
encoder_path: "pytorch_model.bin"
|
| 5 |
+
adapter_path: "pytorch_model_1.bin"
|
| 6 |
+
controlnet_path: "pytorch_model_2.bin"
|
| 7 |
+
bald_converter_path: "./models/stage1/pytorch_model.bin"
|
| 8 |
+
|
| 9 |
+
fusion_blocks: "full"
|
| 10 |
+
|
| 11 |
+
inference_kwargs:
|
| 12 |
+
source_image: "./test_imgs/ID/0.jpg"
|
| 13 |
+
reference_image: "./test_imgs/Ref/0.jpg"
|
| 14 |
+
random_seed: -1
|
| 15 |
+
step: 30
|
| 16 |
+
guidance_scale: 1.5
|
| 17 |
+
controlnet_conditioning_scale: 1
|
| 18 |
+
scale: 1
|
| 19 |
+
size: 512
|
| 20 |
+
|
| 21 |
+
output_path: "./output"
|
| 22 |
+
save_name: "0.jpg"
|
default_config.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
compute_environment: LOCAL_MACHINE
|
| 2 |
+
debug: false
|
| 3 |
+
distributed_type: MULTI_GPU
|
| 4 |
+
main_process_port: 17362
|
| 5 |
+
downcast_bf16: 'no'
|
| 6 |
+
gpu_ids: 0,1,2,3
|
| 7 |
+
machine_rank: 0
|
| 8 |
+
main_training_function: main
|
| 9 |
+
mixed_precision: fp16
|
| 10 |
+
num_machines: 1
|
| 11 |
+
num_processes: 4
|
| 12 |
+
same_network: true
|
| 13 |
+
tpu_env: []
|
| 14 |
+
tpu_use_cluster: false
|
| 15 |
+
tpu_use_sudo: false
|
| 16 |
+
use_cpu: false
|
diffusers/.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
diffusers/__init__.py
ADDED
|
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__ = "0.23.1"
|
| 2 |
+
|
| 3 |
+
from typing import TYPE_CHECKING
|
| 4 |
+
|
| 5 |
+
from .utils import (
|
| 6 |
+
DIFFUSERS_SLOW_IMPORT,
|
| 7 |
+
OptionalDependencyNotAvailable,
|
| 8 |
+
_LazyModule,
|
| 9 |
+
is_flax_available,
|
| 10 |
+
is_k_diffusion_available,
|
| 11 |
+
is_librosa_available,
|
| 12 |
+
is_note_seq_available,
|
| 13 |
+
is_onnx_available,
|
| 14 |
+
is_scipy_available,
|
| 15 |
+
is_torch_available,
|
| 16 |
+
is_torchsde_available,
|
| 17 |
+
is_transformers_available,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Lazy Import based on
|
| 22 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/__init__.py
|
| 23 |
+
|
| 24 |
+
# When adding a new object to this init, please add it to `_import_structure`. The `_import_structure` is a dictionary submodule to list of object names,
|
| 25 |
+
# and is used to defer the actual importing for when the objects are requested.
|
| 26 |
+
# This way `import diffusers` provides the names in the namespace without actually importing anything (and especially none of the backends).
|
| 27 |
+
|
| 28 |
+
_import_structure = {
|
| 29 |
+
"configuration_utils": ["ConfigMixin"],
|
| 30 |
+
"models": [],
|
| 31 |
+
"pipelines": [],
|
| 32 |
+
"schedulers": [],
|
| 33 |
+
"utils": [
|
| 34 |
+
"OptionalDependencyNotAvailable",
|
| 35 |
+
"is_flax_available",
|
| 36 |
+
"is_inflect_available",
|
| 37 |
+
"is_invisible_watermark_available",
|
| 38 |
+
"is_k_diffusion_available",
|
| 39 |
+
"is_k_diffusion_version",
|
| 40 |
+
"is_librosa_available",
|
| 41 |
+
"is_note_seq_available",
|
| 42 |
+
"is_onnx_available",
|
| 43 |
+
"is_scipy_available",
|
| 44 |
+
"is_torch_available",
|
| 45 |
+
"is_torchsde_available",
|
| 46 |
+
"is_transformers_available",
|
| 47 |
+
"is_transformers_version",
|
| 48 |
+
"is_unidecode_available",
|
| 49 |
+
"logging",
|
| 50 |
+
],
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
if not is_onnx_available():
|
| 55 |
+
raise OptionalDependencyNotAvailable()
|
| 56 |
+
except OptionalDependencyNotAvailable:
|
| 57 |
+
from .utils import dummy_onnx_objects # noqa F403
|
| 58 |
+
|
| 59 |
+
_import_structure["utils.dummy_onnx_objects"] = [
|
| 60 |
+
name for name in dir(dummy_onnx_objects) if not name.startswith("_")
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
else:
|
| 64 |
+
_import_structure["pipelines"].extend(["OnnxRuntimeModel"])
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
if not is_torch_available():
|
| 68 |
+
raise OptionalDependencyNotAvailable()
|
| 69 |
+
except OptionalDependencyNotAvailable:
|
| 70 |
+
from .utils import dummy_pt_objects # noqa F403
|
| 71 |
+
|
| 72 |
+
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
|
| 73 |
+
|
| 74 |
+
else:
|
| 75 |
+
_import_structure["models"].extend(
|
| 76 |
+
[
|
| 77 |
+
"AsymmetricAutoencoderKL",
|
| 78 |
+
"AutoencoderKL",
|
| 79 |
+
"AutoencoderTiny",
|
| 80 |
+
"ConsistencyDecoderVAE",
|
| 81 |
+
"ControlNetModel",
|
| 82 |
+
"ModelMixin",
|
| 83 |
+
"MotionAdapter",
|
| 84 |
+
"MultiAdapter",
|
| 85 |
+
"PriorTransformer",
|
| 86 |
+
"T2IAdapter",
|
| 87 |
+
"T5FilmDecoder",
|
| 88 |
+
"Transformer2DModel",
|
| 89 |
+
"UNet1DModel",
|
| 90 |
+
"UNet2DConditionModel",
|
| 91 |
+
"UNet2DModel",
|
| 92 |
+
"UNet3DConditionModel",
|
| 93 |
+
"UNetMotionModel",
|
| 94 |
+
"VQModel",
|
| 95 |
+
]
|
| 96 |
+
)
|
| 97 |
+
_import_structure["optimization"] = [
|
| 98 |
+
"get_constant_schedule",
|
| 99 |
+
"get_constant_schedule_with_warmup",
|
| 100 |
+
"get_cosine_schedule_with_warmup",
|
| 101 |
+
"get_cosine_with_hard_restarts_schedule_with_warmup",
|
| 102 |
+
"get_linear_schedule_with_warmup",
|
| 103 |
+
"get_polynomial_decay_schedule_with_warmup",
|
| 104 |
+
"get_scheduler",
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
_import_structure["pipelines"].extend(
|
| 108 |
+
[
|
| 109 |
+
"AudioPipelineOutput",
|
| 110 |
+
"AutoPipelineForImage2Image",
|
| 111 |
+
"AutoPipelineForInpainting",
|
| 112 |
+
"AutoPipelineForText2Image",
|
| 113 |
+
"ConsistencyModelPipeline",
|
| 114 |
+
"DanceDiffusionPipeline",
|
| 115 |
+
"DDIMPipeline",
|
| 116 |
+
"DDPMPipeline",
|
| 117 |
+
"DiffusionPipeline",
|
| 118 |
+
"DiTPipeline",
|
| 119 |
+
"ImagePipelineOutput",
|
| 120 |
+
"KarrasVePipeline",
|
| 121 |
+
"LDMPipeline",
|
| 122 |
+
"LDMSuperResolutionPipeline",
|
| 123 |
+
"PNDMPipeline",
|
| 124 |
+
"RePaintPipeline",
|
| 125 |
+
"ScoreSdeVePipeline",
|
| 126 |
+
]
|
| 127 |
+
)
|
| 128 |
+
_import_structure["schedulers"].extend(
|
| 129 |
+
[
|
| 130 |
+
"CMStochasticIterativeScheduler",
|
| 131 |
+
"DDIMInverseScheduler",
|
| 132 |
+
"DDIMParallelScheduler",
|
| 133 |
+
"DDIMScheduler",
|
| 134 |
+
"DDPMParallelScheduler",
|
| 135 |
+
"DDPMScheduler",
|
| 136 |
+
"DDPMWuerstchenScheduler",
|
| 137 |
+
"DEISMultistepScheduler",
|
| 138 |
+
"DPMSolverMultistepInverseScheduler",
|
| 139 |
+
"DPMSolverMultistepScheduler",
|
| 140 |
+
"DPMSolverSinglestepScheduler",
|
| 141 |
+
"EulerAncestralDiscreteScheduler",
|
| 142 |
+
"EulerDiscreteScheduler",
|
| 143 |
+
"HeunDiscreteScheduler",
|
| 144 |
+
"IPNDMScheduler",
|
| 145 |
+
"KarrasVeScheduler",
|
| 146 |
+
"KDPM2AncestralDiscreteScheduler",
|
| 147 |
+
"KDPM2DiscreteScheduler",
|
| 148 |
+
"LCMScheduler",
|
| 149 |
+
"PNDMScheduler",
|
| 150 |
+
"RePaintScheduler",
|
| 151 |
+
"SchedulerMixin",
|
| 152 |
+
"ScoreSdeVeScheduler",
|
| 153 |
+
"UnCLIPScheduler",
|
| 154 |
+
"UniPCMultistepScheduler",
|
| 155 |
+
"VQDiffusionScheduler",
|
| 156 |
+
]
|
| 157 |
+
)
|
| 158 |
+
_import_structure["training_utils"] = ["EMAModel"]
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
if not (is_torch_available() and is_scipy_available()):
|
| 162 |
+
raise OptionalDependencyNotAvailable()
|
| 163 |
+
except OptionalDependencyNotAvailable:
|
| 164 |
+
from .utils import dummy_torch_and_scipy_objects # noqa F403
|
| 165 |
+
|
| 166 |
+
_import_structure["utils.dummy_torch_and_scipy_objects"] = [
|
| 167 |
+
name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith("_")
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
+
else:
|
| 171 |
+
_import_structure["schedulers"].extend(["LMSDiscreteScheduler"])
|
| 172 |
+
|
| 173 |
+
try:
|
| 174 |
+
if not (is_torch_available() and is_torchsde_available()):
|
| 175 |
+
raise OptionalDependencyNotAvailable()
|
| 176 |
+
except OptionalDependencyNotAvailable:
|
| 177 |
+
from .utils import dummy_torch_and_torchsde_objects # noqa F403
|
| 178 |
+
|
| 179 |
+
_import_structure["utils.dummy_torch_and_torchsde_objects"] = [
|
| 180 |
+
name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith("_")
|
| 181 |
+
]
|
| 182 |
+
|
| 183 |
+
else:
|
| 184 |
+
_import_structure["schedulers"].extend(["DPMSolverSDEScheduler"])
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
if not (is_torch_available() and is_transformers_available()):
|
| 188 |
+
raise OptionalDependencyNotAvailable()
|
| 189 |
+
except OptionalDependencyNotAvailable:
|
| 190 |
+
from .utils import dummy_torch_and_transformers_objects # noqa F403
|
| 191 |
+
|
| 192 |
+
_import_structure["utils.dummy_torch_and_transformers_objects"] = [
|
| 193 |
+
name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith("_")
|
| 194 |
+
]
|
| 195 |
+
|
| 196 |
+
else:
|
| 197 |
+
_import_structure["pipelines"].extend(
|
| 198 |
+
[
|
| 199 |
+
"AltDiffusionImg2ImgPipeline",
|
| 200 |
+
"AltDiffusionPipeline",
|
| 201 |
+
"AnimateDiffPipeline",
|
| 202 |
+
"AudioLDM2Pipeline",
|
| 203 |
+
"AudioLDM2ProjectionModel",
|
| 204 |
+
"AudioLDM2UNet2DConditionModel",
|
| 205 |
+
"AudioLDMPipeline",
|
| 206 |
+
"BlipDiffusionControlNetPipeline",
|
| 207 |
+
"BlipDiffusionPipeline",
|
| 208 |
+
"CLIPImageProjection",
|
| 209 |
+
"CycleDiffusionPipeline",
|
| 210 |
+
"IFImg2ImgPipeline",
|
| 211 |
+
"IFImg2ImgSuperResolutionPipeline",
|
| 212 |
+
"IFInpaintingPipeline",
|
| 213 |
+
"IFInpaintingSuperResolutionPipeline",
|
| 214 |
+
"IFPipeline",
|
| 215 |
+
"IFSuperResolutionPipeline",
|
| 216 |
+
"ImageTextPipelineOutput",
|
| 217 |
+
"KandinskyCombinedPipeline",
|
| 218 |
+
"KandinskyImg2ImgCombinedPipeline",
|
| 219 |
+
"KandinskyImg2ImgPipeline",
|
| 220 |
+
"KandinskyInpaintCombinedPipeline",
|
| 221 |
+
"KandinskyInpaintPipeline",
|
| 222 |
+
"KandinskyPipeline",
|
| 223 |
+
"KandinskyPriorPipeline",
|
| 224 |
+
"KandinskyV22CombinedPipeline",
|
| 225 |
+
"KandinskyV22ControlnetImg2ImgPipeline",
|
| 226 |
+
"KandinskyV22ControlnetPipeline",
|
| 227 |
+
"KandinskyV22Img2ImgCombinedPipeline",
|
| 228 |
+
"KandinskyV22Img2ImgPipeline",
|
| 229 |
+
"KandinskyV22InpaintCombinedPipeline",
|
| 230 |
+
"KandinskyV22InpaintPipeline",
|
| 231 |
+
"KandinskyV22Pipeline",
|
| 232 |
+
"KandinskyV22PriorEmb2EmbPipeline",
|
| 233 |
+
"KandinskyV22PriorPipeline",
|
| 234 |
+
"LatentConsistencyModelImg2ImgPipeline",
|
| 235 |
+
"LatentConsistencyModelPipeline",
|
| 236 |
+
"LDMTextToImagePipeline",
|
| 237 |
+
"MusicLDMPipeline",
|
| 238 |
+
"PaintByExamplePipeline",
|
| 239 |
+
"PixArtAlphaPipeline",
|
| 240 |
+
"SemanticStableDiffusionPipeline",
|
| 241 |
+
"ShapEImg2ImgPipeline",
|
| 242 |
+
"ShapEPipeline",
|
| 243 |
+
"StableDiffusionAdapterPipeline",
|
| 244 |
+
"StableDiffusionAttendAndExcitePipeline",
|
| 245 |
+
"StableDiffusionControlNetImg2ImgPipeline",
|
| 246 |
+
"StableDiffusionControlNetInpaintPipeline",
|
| 247 |
+
"StableDiffusionControlNetPipeline",
|
| 248 |
+
"StableDiffusionDepth2ImgPipeline",
|
| 249 |
+
"StableDiffusionDiffEditPipeline",
|
| 250 |
+
"StableDiffusionGLIGENPipeline",
|
| 251 |
+
"StableDiffusionGLIGENTextImagePipeline",
|
| 252 |
+
"StableDiffusionImageVariationPipeline",
|
| 253 |
+
"StableDiffusionImg2ImgPipeline",
|
| 254 |
+
"StableDiffusionInpaintPipeline",
|
| 255 |
+
"StableDiffusionInpaintPipelineLegacy",
|
| 256 |
+
"StableDiffusionInstructPix2PixPipeline",
|
| 257 |
+
"StableDiffusionLatentUpscalePipeline",
|
| 258 |
+
"StableDiffusionLDM3DPipeline",
|
| 259 |
+
"StableDiffusionModelEditingPipeline",
|
| 260 |
+
"StableDiffusionPanoramaPipeline",
|
| 261 |
+
"StableDiffusionParadigmsPipeline",
|
| 262 |
+
"StableDiffusionPipeline",
|
| 263 |
+
"StableDiffusionPipelineSafe",
|
| 264 |
+
"StableDiffusionPix2PixZeroPipeline",
|
| 265 |
+
"StableDiffusionSAGPipeline",
|
| 266 |
+
"StableDiffusionUpscalePipeline",
|
| 267 |
+
"StableDiffusionXLAdapterPipeline",
|
| 268 |
+
"StableDiffusionXLControlNetImg2ImgPipeline",
|
| 269 |
+
"StableDiffusionXLControlNetInpaintPipeline",
|
| 270 |
+
"StableDiffusionXLControlNetPipeline",
|
| 271 |
+
"StableDiffusionXLImg2ImgPipeline",
|
| 272 |
+
"StableDiffusionXLInpaintPipeline",
|
| 273 |
+
"StableDiffusionXLInstructPix2PixPipeline",
|
| 274 |
+
"StableDiffusionXLPipeline",
|
| 275 |
+
"StableUnCLIPImg2ImgPipeline",
|
| 276 |
+
"StableUnCLIPPipeline",
|
| 277 |
+
"TextToVideoSDPipeline",
|
| 278 |
+
"TextToVideoZeroPipeline",
|
| 279 |
+
"UnCLIPImageVariationPipeline",
|
| 280 |
+
"UnCLIPPipeline",
|
| 281 |
+
"UniDiffuserModel",
|
| 282 |
+
"UniDiffuserPipeline",
|
| 283 |
+
"UniDiffuserTextDecoder",
|
| 284 |
+
"VersatileDiffusionDualGuidedPipeline",
|
| 285 |
+
"VersatileDiffusionImageVariationPipeline",
|
| 286 |
+
"VersatileDiffusionPipeline",
|
| 287 |
+
"VersatileDiffusionTextToImagePipeline",
|
| 288 |
+
"VideoToVideoSDPipeline",
|
| 289 |
+
"VQDiffusionPipeline",
|
| 290 |
+
"WuerstchenCombinedPipeline",
|
| 291 |
+
"WuerstchenDecoderPipeline",
|
| 292 |
+
"WuerstchenPriorPipeline",
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
try:
|
| 297 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
| 298 |
+
raise OptionalDependencyNotAvailable()
|
| 299 |
+
except OptionalDependencyNotAvailable:
|
| 300 |
+
from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
|
| 301 |
+
|
| 302 |
+
_import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
|
| 303 |
+
name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
|
| 304 |
+
]
|
| 305 |
+
|
| 306 |
+
else:
|
| 307 |
+
_import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline"])
|
| 308 |
+
|
| 309 |
+
try:
|
| 310 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
| 311 |
+
raise OptionalDependencyNotAvailable()
|
| 312 |
+
except OptionalDependencyNotAvailable:
|
| 313 |
+
from .utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
|
| 314 |
+
|
| 315 |
+
_import_structure["utils.dummy_torch_and_transformers_and_onnx_objects"] = [
|
| 316 |
+
name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith("_")
|
| 317 |
+
]
|
| 318 |
+
|
| 319 |
+
else:
|
| 320 |
+
_import_structure["pipelines"].extend(
|
| 321 |
+
[
|
| 322 |
+
"OnnxStableDiffusionImg2ImgPipeline",
|
| 323 |
+
"OnnxStableDiffusionInpaintPipeline",
|
| 324 |
+
"OnnxStableDiffusionInpaintPipelineLegacy",
|
| 325 |
+
"OnnxStableDiffusionPipeline",
|
| 326 |
+
"OnnxStableDiffusionUpscalePipeline",
|
| 327 |
+
"StableDiffusionOnnxPipeline",
|
| 328 |
+
]
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
try:
|
| 332 |
+
if not (is_torch_available() and is_librosa_available()):
|
| 333 |
+
raise OptionalDependencyNotAvailable()
|
| 334 |
+
except OptionalDependencyNotAvailable:
|
| 335 |
+
from .utils import dummy_torch_and_librosa_objects # noqa F403
|
| 336 |
+
|
| 337 |
+
_import_structure["utils.dummy_torch_and_librosa_objects"] = [
|
| 338 |
+
name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith("_")
|
| 339 |
+
]
|
| 340 |
+
|
| 341 |
+
else:
|
| 342 |
+
_import_structure["pipelines"].extend(["AudioDiffusionPipeline", "Mel"])
|
| 343 |
+
|
| 344 |
+
try:
|
| 345 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
| 346 |
+
raise OptionalDependencyNotAvailable()
|
| 347 |
+
except OptionalDependencyNotAvailable:
|
| 348 |
+
from .utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
|
| 349 |
+
|
| 350 |
+
_import_structure["utils.dummy_transformers_and_torch_and_note_seq_objects"] = [
|
| 351 |
+
name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith("_")
|
| 352 |
+
]
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
else:
|
| 356 |
+
_import_structure["pipelines"].extend(["SpectrogramDiffusionPipeline"])
|
| 357 |
+
|
| 358 |
+
try:
|
| 359 |
+
if not is_flax_available():
|
| 360 |
+
raise OptionalDependencyNotAvailable()
|
| 361 |
+
except OptionalDependencyNotAvailable:
|
| 362 |
+
from .utils import dummy_flax_objects # noqa F403
|
| 363 |
+
|
| 364 |
+
_import_structure["utils.dummy_flax_objects"] = [
|
| 365 |
+
name for name in dir(dummy_flax_objects) if not name.startswith("_")
|
| 366 |
+
]
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
else:
|
| 370 |
+
_import_structure["models.controlnet_flax"] = ["FlaxControlNetModel"]
|
| 371 |
+
_import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
|
| 372 |
+
_import_structure["models.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
|
| 373 |
+
_import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
|
| 374 |
+
_import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
|
| 375 |
+
_import_structure["schedulers"].extend(
|
| 376 |
+
[
|
| 377 |
+
"FlaxDDIMScheduler",
|
| 378 |
+
"FlaxDDPMScheduler",
|
| 379 |
+
"FlaxDPMSolverMultistepScheduler",
|
| 380 |
+
"FlaxEulerDiscreteScheduler",
|
| 381 |
+
"FlaxKarrasVeScheduler",
|
| 382 |
+
"FlaxLMSDiscreteScheduler",
|
| 383 |
+
"FlaxPNDMScheduler",
|
| 384 |
+
"FlaxSchedulerMixin",
|
| 385 |
+
"FlaxScoreSdeVeScheduler",
|
| 386 |
+
]
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
try:
|
| 391 |
+
if not (is_flax_available() and is_transformers_available()):
|
| 392 |
+
raise OptionalDependencyNotAvailable()
|
| 393 |
+
except OptionalDependencyNotAvailable:
|
| 394 |
+
from .utils import dummy_flax_and_transformers_objects # noqa F403
|
| 395 |
+
|
| 396 |
+
_import_structure["utils.dummy_flax_and_transformers_objects"] = [
|
| 397 |
+
name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith("_")
|
| 398 |
+
]
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
else:
|
| 402 |
+
_import_structure["pipelines"].extend(
|
| 403 |
+
[
|
| 404 |
+
"FlaxStableDiffusionControlNetPipeline",
|
| 405 |
+
"FlaxStableDiffusionImg2ImgPipeline",
|
| 406 |
+
"FlaxStableDiffusionInpaintPipeline",
|
| 407 |
+
"FlaxStableDiffusionPipeline",
|
| 408 |
+
"FlaxStableDiffusionXLPipeline",
|
| 409 |
+
]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
try:
|
| 413 |
+
if not (is_note_seq_available()):
|
| 414 |
+
raise OptionalDependencyNotAvailable()
|
| 415 |
+
except OptionalDependencyNotAvailable:
|
| 416 |
+
from .utils import dummy_note_seq_objects # noqa F403
|
| 417 |
+
|
| 418 |
+
_import_structure["utils.dummy_note_seq_objects"] = [
|
| 419 |
+
name for name in dir(dummy_note_seq_objects) if not name.startswith("_")
|
| 420 |
+
]
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
else:
|
| 424 |
+
_import_structure["pipelines"].extend(["MidiProcessor"])
|
| 425 |
+
|
| 426 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
| 427 |
+
from .configuration_utils import ConfigMixin
|
| 428 |
+
|
| 429 |
+
try:
|
| 430 |
+
if not is_onnx_available():
|
| 431 |
+
raise OptionalDependencyNotAvailable()
|
| 432 |
+
except OptionalDependencyNotAvailable:
|
| 433 |
+
from .utils.dummy_onnx_objects import * # noqa F403
|
| 434 |
+
else:
|
| 435 |
+
from .pipelines import OnnxRuntimeModel
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
if not is_torch_available():
|
| 439 |
+
raise OptionalDependencyNotAvailable()
|
| 440 |
+
except OptionalDependencyNotAvailable:
|
| 441 |
+
from .utils.dummy_pt_objects import * # noqa F403
|
| 442 |
+
else:
|
| 443 |
+
from .models import (
|
| 444 |
+
AsymmetricAutoencoderKL,
|
| 445 |
+
AutoencoderKL,
|
| 446 |
+
AutoencoderTiny,
|
| 447 |
+
ConsistencyDecoderVAE,
|
| 448 |
+
ControlNetModel,
|
| 449 |
+
ModelMixin,
|
| 450 |
+
MotionAdapter,
|
| 451 |
+
MultiAdapter,
|
| 452 |
+
PriorTransformer,
|
| 453 |
+
T2IAdapter,
|
| 454 |
+
T5FilmDecoder,
|
| 455 |
+
Transformer2DModel,
|
| 456 |
+
UNet1DModel,
|
| 457 |
+
UNet2DConditionModel,
|
| 458 |
+
UNet2DModel,
|
| 459 |
+
UNet3DConditionModel,
|
| 460 |
+
UNetMotionModel,
|
| 461 |
+
VQModel,
|
| 462 |
+
)
|
| 463 |
+
from .optimization import (
|
| 464 |
+
get_constant_schedule,
|
| 465 |
+
get_constant_schedule_with_warmup,
|
| 466 |
+
get_cosine_schedule_with_warmup,
|
| 467 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
| 468 |
+
get_linear_schedule_with_warmup,
|
| 469 |
+
get_polynomial_decay_schedule_with_warmup,
|
| 470 |
+
get_scheduler,
|
| 471 |
+
)
|
| 472 |
+
from .pipelines import (
|
| 473 |
+
AudioPipelineOutput,
|
| 474 |
+
AutoPipelineForImage2Image,
|
| 475 |
+
AutoPipelineForInpainting,
|
| 476 |
+
AutoPipelineForText2Image,
|
| 477 |
+
BlipDiffusionControlNetPipeline,
|
| 478 |
+
BlipDiffusionPipeline,
|
| 479 |
+
CLIPImageProjection,
|
| 480 |
+
ConsistencyModelPipeline,
|
| 481 |
+
DanceDiffusionPipeline,
|
| 482 |
+
DDIMPipeline,
|
| 483 |
+
DDPMPipeline,
|
| 484 |
+
DiffusionPipeline,
|
| 485 |
+
DiTPipeline,
|
| 486 |
+
ImagePipelineOutput,
|
| 487 |
+
KarrasVePipeline,
|
| 488 |
+
LDMPipeline,
|
| 489 |
+
LDMSuperResolutionPipeline,
|
| 490 |
+
PNDMPipeline,
|
| 491 |
+
RePaintPipeline,
|
| 492 |
+
ScoreSdeVePipeline,
|
| 493 |
+
)
|
| 494 |
+
from .schedulers import (
|
| 495 |
+
CMStochasticIterativeScheduler,
|
| 496 |
+
DDIMInverseScheduler,
|
| 497 |
+
DDIMParallelScheduler,
|
| 498 |
+
DDIMScheduler,
|
| 499 |
+
DDPMParallelScheduler,
|
| 500 |
+
DDPMScheduler,
|
| 501 |
+
DDPMWuerstchenScheduler,
|
| 502 |
+
DEISMultistepScheduler,
|
| 503 |
+
DPMSolverMultistepInverseScheduler,
|
| 504 |
+
DPMSolverMultistepScheduler,
|
| 505 |
+
DPMSolverSinglestepScheduler,
|
| 506 |
+
EulerAncestralDiscreteScheduler,
|
| 507 |
+
EulerDiscreteScheduler,
|
| 508 |
+
HeunDiscreteScheduler,
|
| 509 |
+
IPNDMScheduler,
|
| 510 |
+
KarrasVeScheduler,
|
| 511 |
+
KDPM2AncestralDiscreteScheduler,
|
| 512 |
+
KDPM2DiscreteScheduler,
|
| 513 |
+
LCMScheduler,
|
| 514 |
+
PNDMScheduler,
|
| 515 |
+
RePaintScheduler,
|
| 516 |
+
SchedulerMixin,
|
| 517 |
+
ScoreSdeVeScheduler,
|
| 518 |
+
UnCLIPScheduler,
|
| 519 |
+
UniPCMultistepScheduler,
|
| 520 |
+
VQDiffusionScheduler,
|
| 521 |
+
)
|
| 522 |
+
from .training_utils import EMAModel
|
| 523 |
+
|
| 524 |
+
try:
|
| 525 |
+
if not (is_torch_available() and is_scipy_available()):
|
| 526 |
+
raise OptionalDependencyNotAvailable()
|
| 527 |
+
except OptionalDependencyNotAvailable:
|
| 528 |
+
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
|
| 529 |
+
else:
|
| 530 |
+
from .schedulers import LMSDiscreteScheduler
|
| 531 |
+
|
| 532 |
+
try:
|
| 533 |
+
if not (is_torch_available() and is_torchsde_available()):
|
| 534 |
+
raise OptionalDependencyNotAvailable()
|
| 535 |
+
except OptionalDependencyNotAvailable:
|
| 536 |
+
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
| 537 |
+
else:
|
| 538 |
+
from .schedulers import DPMSolverSDEScheduler
|
| 539 |
+
|
| 540 |
+
try:
|
| 541 |
+
if not (is_torch_available() and is_transformers_available()):
|
| 542 |
+
raise OptionalDependencyNotAvailable()
|
| 543 |
+
except OptionalDependencyNotAvailable:
|
| 544 |
+
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
|
| 545 |
+
else:
|
| 546 |
+
from .pipelines import (
|
| 547 |
+
AltDiffusionImg2ImgPipeline,
|
| 548 |
+
AltDiffusionPipeline,
|
| 549 |
+
AnimateDiffPipeline,
|
| 550 |
+
AudioLDM2Pipeline,
|
| 551 |
+
AudioLDM2ProjectionModel,
|
| 552 |
+
AudioLDM2UNet2DConditionModel,
|
| 553 |
+
AudioLDMPipeline,
|
| 554 |
+
CLIPImageProjection,
|
| 555 |
+
CycleDiffusionPipeline,
|
| 556 |
+
IFImg2ImgPipeline,
|
| 557 |
+
IFImg2ImgSuperResolutionPipeline,
|
| 558 |
+
IFInpaintingPipeline,
|
| 559 |
+
IFInpaintingSuperResolutionPipeline,
|
| 560 |
+
IFPipeline,
|
| 561 |
+
IFSuperResolutionPipeline,
|
| 562 |
+
ImageTextPipelineOutput,
|
| 563 |
+
KandinskyCombinedPipeline,
|
| 564 |
+
KandinskyImg2ImgCombinedPipeline,
|
| 565 |
+
KandinskyImg2ImgPipeline,
|
| 566 |
+
KandinskyInpaintCombinedPipeline,
|
| 567 |
+
KandinskyInpaintPipeline,
|
| 568 |
+
KandinskyPipeline,
|
| 569 |
+
KandinskyPriorPipeline,
|
| 570 |
+
KandinskyV22CombinedPipeline,
|
| 571 |
+
KandinskyV22ControlnetImg2ImgPipeline,
|
| 572 |
+
KandinskyV22ControlnetPipeline,
|
| 573 |
+
KandinskyV22Img2ImgCombinedPipeline,
|
| 574 |
+
KandinskyV22Img2ImgPipeline,
|
| 575 |
+
KandinskyV22InpaintCombinedPipeline,
|
| 576 |
+
KandinskyV22InpaintPipeline,
|
| 577 |
+
KandinskyV22Pipeline,
|
| 578 |
+
KandinskyV22PriorEmb2EmbPipeline,
|
| 579 |
+
KandinskyV22PriorPipeline,
|
| 580 |
+
LatentConsistencyModelImg2ImgPipeline,
|
| 581 |
+
LatentConsistencyModelPipeline,
|
| 582 |
+
LDMTextToImagePipeline,
|
| 583 |
+
MusicLDMPipeline,
|
| 584 |
+
PaintByExamplePipeline,
|
| 585 |
+
PixArtAlphaPipeline,
|
| 586 |
+
SemanticStableDiffusionPipeline,
|
| 587 |
+
ShapEImg2ImgPipeline,
|
| 588 |
+
ShapEPipeline,
|
| 589 |
+
StableDiffusionAdapterPipeline,
|
| 590 |
+
StableDiffusionAttendAndExcitePipeline,
|
| 591 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
| 592 |
+
StableDiffusionControlNetInpaintPipeline,
|
| 593 |
+
StableDiffusionControlNetPipeline,
|
| 594 |
+
StableDiffusionDepth2ImgPipeline,
|
| 595 |
+
StableDiffusionDiffEditPipeline,
|
| 596 |
+
StableDiffusionGLIGENPipeline,
|
| 597 |
+
StableDiffusionGLIGENTextImagePipeline,
|
| 598 |
+
StableDiffusionImageVariationPipeline,
|
| 599 |
+
StableDiffusionImg2ImgPipeline,
|
| 600 |
+
StableDiffusionInpaintPipeline,
|
| 601 |
+
StableDiffusionInpaintPipelineLegacy,
|
| 602 |
+
StableDiffusionInstructPix2PixPipeline,
|
| 603 |
+
StableDiffusionLatentUpscalePipeline,
|
| 604 |
+
StableDiffusionLDM3DPipeline,
|
| 605 |
+
StableDiffusionModelEditingPipeline,
|
| 606 |
+
StableDiffusionPanoramaPipeline,
|
| 607 |
+
StableDiffusionParadigmsPipeline,
|
| 608 |
+
StableDiffusionPipeline,
|
| 609 |
+
StableDiffusionPipelineSafe,
|
| 610 |
+
StableDiffusionPix2PixZeroPipeline,
|
| 611 |
+
StableDiffusionSAGPipeline,
|
| 612 |
+
StableDiffusionUpscalePipeline,
|
| 613 |
+
StableDiffusionXLAdapterPipeline,
|
| 614 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
| 615 |
+
StableDiffusionXLControlNetInpaintPipeline,
|
| 616 |
+
StableDiffusionXLControlNetPipeline,
|
| 617 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 618 |
+
StableDiffusionXLInpaintPipeline,
|
| 619 |
+
StableDiffusionXLInstructPix2PixPipeline,
|
| 620 |
+
StableDiffusionXLPipeline,
|
| 621 |
+
StableUnCLIPImg2ImgPipeline,
|
| 622 |
+
StableUnCLIPPipeline,
|
| 623 |
+
TextToVideoSDPipeline,
|
| 624 |
+
TextToVideoZeroPipeline,
|
| 625 |
+
UnCLIPImageVariationPipeline,
|
| 626 |
+
UnCLIPPipeline,
|
| 627 |
+
UniDiffuserModel,
|
| 628 |
+
UniDiffuserPipeline,
|
| 629 |
+
UniDiffuserTextDecoder,
|
| 630 |
+
VersatileDiffusionDualGuidedPipeline,
|
| 631 |
+
VersatileDiffusionImageVariationPipeline,
|
| 632 |
+
VersatileDiffusionPipeline,
|
| 633 |
+
VersatileDiffusionTextToImagePipeline,
|
| 634 |
+
VideoToVideoSDPipeline,
|
| 635 |
+
VQDiffusionPipeline,
|
| 636 |
+
WuerstchenCombinedPipeline,
|
| 637 |
+
WuerstchenDecoderPipeline,
|
| 638 |
+
WuerstchenPriorPipeline,
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
try:
|
| 642 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
| 643 |
+
raise OptionalDependencyNotAvailable()
|
| 644 |
+
except OptionalDependencyNotAvailable:
|
| 645 |
+
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
|
| 646 |
+
else:
|
| 647 |
+
from .pipelines import StableDiffusionKDiffusionPipeline
|
| 648 |
+
|
| 649 |
+
try:
|
| 650 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
| 651 |
+
raise OptionalDependencyNotAvailable()
|
| 652 |
+
except OptionalDependencyNotAvailable:
|
| 653 |
+
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
|
| 654 |
+
else:
|
| 655 |
+
from .pipelines import (
|
| 656 |
+
OnnxStableDiffusionImg2ImgPipeline,
|
| 657 |
+
OnnxStableDiffusionInpaintPipeline,
|
| 658 |
+
OnnxStableDiffusionInpaintPipelineLegacy,
|
| 659 |
+
OnnxStableDiffusionPipeline,
|
| 660 |
+
OnnxStableDiffusionUpscalePipeline,
|
| 661 |
+
StableDiffusionOnnxPipeline,
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
try:
|
| 665 |
+
if not (is_torch_available() and is_librosa_available()):
|
| 666 |
+
raise OptionalDependencyNotAvailable()
|
| 667 |
+
except OptionalDependencyNotAvailable:
|
| 668 |
+
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
|
| 669 |
+
else:
|
| 670 |
+
from .pipelines import AudioDiffusionPipeline, Mel
|
| 671 |
+
|
| 672 |
+
try:
|
| 673 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
| 674 |
+
raise OptionalDependencyNotAvailable()
|
| 675 |
+
except OptionalDependencyNotAvailable:
|
| 676 |
+
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
|
| 677 |
+
else:
|
| 678 |
+
from .pipelines import SpectrogramDiffusionPipeline
|
| 679 |
+
|
| 680 |
+
try:
|
| 681 |
+
if not is_flax_available():
|
| 682 |
+
raise OptionalDependencyNotAvailable()
|
| 683 |
+
except OptionalDependencyNotAvailable:
|
| 684 |
+
from .utils.dummy_flax_objects import * # noqa F403
|
| 685 |
+
else:
|
| 686 |
+
from .models.controlnet_flax import FlaxControlNetModel
|
| 687 |
+
from .models.modeling_flax_utils import FlaxModelMixin
|
| 688 |
+
from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
|
| 689 |
+
from .models.vae_flax import FlaxAutoencoderKL
|
| 690 |
+
from .pipelines import FlaxDiffusionPipeline
|
| 691 |
+
from .schedulers import (
|
| 692 |
+
FlaxDDIMScheduler,
|
| 693 |
+
FlaxDDPMScheduler,
|
| 694 |
+
FlaxDPMSolverMultistepScheduler,
|
| 695 |
+
FlaxEulerDiscreteScheduler,
|
| 696 |
+
FlaxKarrasVeScheduler,
|
| 697 |
+
FlaxLMSDiscreteScheduler,
|
| 698 |
+
FlaxPNDMScheduler,
|
| 699 |
+
FlaxSchedulerMixin,
|
| 700 |
+
FlaxScoreSdeVeScheduler,
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
try:
|
| 704 |
+
if not (is_flax_available() and is_transformers_available()):
|
| 705 |
+
raise OptionalDependencyNotAvailable()
|
| 706 |
+
except OptionalDependencyNotAvailable:
|
| 707 |
+
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
|
| 708 |
+
else:
|
| 709 |
+
from .pipelines import (
|
| 710 |
+
FlaxStableDiffusionControlNetPipeline,
|
| 711 |
+
FlaxStableDiffusionImg2ImgPipeline,
|
| 712 |
+
FlaxStableDiffusionInpaintPipeline,
|
| 713 |
+
FlaxStableDiffusionPipeline,
|
| 714 |
+
FlaxStableDiffusionXLPipeline,
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
try:
|
| 718 |
+
if not (is_note_seq_available()):
|
| 719 |
+
raise OptionalDependencyNotAvailable()
|
| 720 |
+
except OptionalDependencyNotAvailable:
|
| 721 |
+
from .utils.dummy_note_seq_objects import * # noqa F403
|
| 722 |
+
else:
|
| 723 |
+
from .pipelines import MidiProcessor
|
| 724 |
+
|
| 725 |
+
else:
|
| 726 |
+
import sys
|
| 727 |
+
|
| 728 |
+
sys.modules[__name__] = _LazyModule(
|
| 729 |
+
__name__,
|
| 730 |
+
globals()["__file__"],
|
| 731 |
+
_import_structure,
|
| 732 |
+
module_spec=__spec__,
|
| 733 |
+
extra_objects={"__version__": __version__},
|
| 734 |
+
)
|
diffusers/commands/__init__.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from abc import ABC, abstractmethod
|
| 16 |
+
from argparse import ArgumentParser
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class BaseDiffusersCLICommand(ABC):
|
| 20 |
+
@staticmethod
|
| 21 |
+
@abstractmethod
|
| 22 |
+
def register_subcommand(parser: ArgumentParser):
|
| 23 |
+
raise NotImplementedError()
|
| 24 |
+
|
| 25 |
+
@abstractmethod
|
| 26 |
+
def run(self):
|
| 27 |
+
raise NotImplementedError()
|
diffusers/commands/diffusers_cli.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from argparse import ArgumentParser
|
| 17 |
+
|
| 18 |
+
from .env import EnvironmentCommand
|
| 19 |
+
from .fp16_safetensors import FP16SafetensorsCommand
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def main():
|
| 23 |
+
parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
|
| 24 |
+
commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
|
| 25 |
+
|
| 26 |
+
# Register commands
|
| 27 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
| 28 |
+
FP16SafetensorsCommand.register_subcommand(commands_parser)
|
| 29 |
+
|
| 30 |
+
# Let's go
|
| 31 |
+
args = parser.parse_args()
|
| 32 |
+
|
| 33 |
+
if not hasattr(args, "func"):
|
| 34 |
+
parser.print_help()
|
| 35 |
+
exit(1)
|
| 36 |
+
|
| 37 |
+
# Run
|
| 38 |
+
service = args.func(args)
|
| 39 |
+
service.run()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
main()
|
diffusers/commands/env.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import platform
|
| 16 |
+
from argparse import ArgumentParser
|
| 17 |
+
|
| 18 |
+
import huggingface_hub
|
| 19 |
+
|
| 20 |
+
from .. import __version__ as version
|
| 21 |
+
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
|
| 22 |
+
from . import BaseDiffusersCLICommand
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def info_command_factory(_):
|
| 26 |
+
return EnvironmentCommand()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class EnvironmentCommand(BaseDiffusersCLICommand):
|
| 30 |
+
@staticmethod
|
| 31 |
+
def register_subcommand(parser: ArgumentParser):
|
| 32 |
+
download_parser = parser.add_parser("env")
|
| 33 |
+
download_parser.set_defaults(func=info_command_factory)
|
| 34 |
+
|
| 35 |
+
def run(self):
|
| 36 |
+
hub_version = huggingface_hub.__version__
|
| 37 |
+
|
| 38 |
+
pt_version = "not installed"
|
| 39 |
+
pt_cuda_available = "NA"
|
| 40 |
+
if is_torch_available():
|
| 41 |
+
import torch
|
| 42 |
+
|
| 43 |
+
pt_version = torch.__version__
|
| 44 |
+
pt_cuda_available = torch.cuda.is_available()
|
| 45 |
+
|
| 46 |
+
transformers_version = "not installed"
|
| 47 |
+
if is_transformers_available():
|
| 48 |
+
import transformers
|
| 49 |
+
|
| 50 |
+
transformers_version = transformers.__version__
|
| 51 |
+
|
| 52 |
+
accelerate_version = "not installed"
|
| 53 |
+
if is_accelerate_available():
|
| 54 |
+
import accelerate
|
| 55 |
+
|
| 56 |
+
accelerate_version = accelerate.__version__
|
| 57 |
+
|
| 58 |
+
xformers_version = "not installed"
|
| 59 |
+
if is_xformers_available():
|
| 60 |
+
import xformers
|
| 61 |
+
|
| 62 |
+
xformers_version = xformers.__version__
|
| 63 |
+
|
| 64 |
+
info = {
|
| 65 |
+
"`diffusers` version": version,
|
| 66 |
+
"Platform": platform.platform(),
|
| 67 |
+
"Python version": platform.python_version(),
|
| 68 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
| 69 |
+
"Huggingface_hub version": hub_version,
|
| 70 |
+
"Transformers version": transformers_version,
|
| 71 |
+
"Accelerate version": accelerate_version,
|
| 72 |
+
"xFormers version": xformers_version,
|
| 73 |
+
"Using GPU in script?": "<fill in>",
|
| 74 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
| 78 |
+
print(self.format_dict(info))
|
| 79 |
+
|
| 80 |
+
return info
|
| 81 |
+
|
| 82 |
+
@staticmethod
|
| 83 |
+
def format_dict(d):
|
| 84 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
diffusers/commands/fp16_safetensors.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Usage example:
|
| 17 |
+
diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import glob
|
| 21 |
+
import json
|
| 22 |
+
from argparse import ArgumentParser, Namespace
|
| 23 |
+
from importlib import import_module
|
| 24 |
+
|
| 25 |
+
import huggingface_hub
|
| 26 |
+
import torch
|
| 27 |
+
from huggingface_hub import hf_hub_download
|
| 28 |
+
from packaging import version
|
| 29 |
+
|
| 30 |
+
from ..utils import logging
|
| 31 |
+
from . import BaseDiffusersCLICommand
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def conversion_command_factory(args: Namespace):
|
| 35 |
+
return FP16SafetensorsCommand(
|
| 36 |
+
args.ckpt_id,
|
| 37 |
+
args.fp16,
|
| 38 |
+
args.use_safetensors,
|
| 39 |
+
args.use_auth_token,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
| 44 |
+
@staticmethod
|
| 45 |
+
def register_subcommand(parser: ArgumentParser):
|
| 46 |
+
conversion_parser = parser.add_parser("fp16_safetensors")
|
| 47 |
+
conversion_parser.add_argument(
|
| 48 |
+
"--ckpt_id",
|
| 49 |
+
type=str,
|
| 50 |
+
help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
|
| 51 |
+
)
|
| 52 |
+
conversion_parser.add_argument(
|
| 53 |
+
"--fp16", action="store_true", help="If serializing the variables in FP16 precision."
|
| 54 |
+
)
|
| 55 |
+
conversion_parser.add_argument(
|
| 56 |
+
"--use_safetensors", action="store_true", help="If serializing in the safetensors format."
|
| 57 |
+
)
|
| 58 |
+
conversion_parser.add_argument(
|
| 59 |
+
"--use_auth_token",
|
| 60 |
+
action="store_true",
|
| 61 |
+
help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
|
| 62 |
+
)
|
| 63 |
+
conversion_parser.set_defaults(func=conversion_command_factory)
|
| 64 |
+
|
| 65 |
+
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool, use_auth_token: bool):
|
| 66 |
+
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
|
| 67 |
+
self.ckpt_id = ckpt_id
|
| 68 |
+
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
|
| 69 |
+
self.fp16 = fp16
|
| 70 |
+
|
| 71 |
+
self.use_safetensors = use_safetensors
|
| 72 |
+
|
| 73 |
+
if not self.use_safetensors and not self.fp16:
|
| 74 |
+
raise NotImplementedError(
|
| 75 |
+
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.use_auth_token = use_auth_token
|
| 79 |
+
|
| 80 |
+
def run(self):
|
| 81 |
+
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
| 82 |
+
raise ImportError(
|
| 83 |
+
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
| 84 |
+
" installation."
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
from huggingface_hub import create_commit
|
| 88 |
+
from huggingface_hub._commit_api import CommitOperationAdd
|
| 89 |
+
|
| 90 |
+
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json", token=self.use_auth_token)
|
| 91 |
+
with open(model_index, "r") as f:
|
| 92 |
+
pipeline_class_name = json.load(f)["_class_name"]
|
| 93 |
+
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
|
| 94 |
+
self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
|
| 95 |
+
|
| 96 |
+
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
|
| 97 |
+
# here, but just to avoid any rough edge cases.
|
| 98 |
+
pipeline = pipeline_class.from_pretrained(
|
| 99 |
+
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32, use_auth_token=self.use_auth_token
|
| 100 |
+
)
|
| 101 |
+
pipeline.save_pretrained(
|
| 102 |
+
self.local_ckpt_dir,
|
| 103 |
+
safe_serialization=True if self.use_safetensors else False,
|
| 104 |
+
variant="fp16" if self.fp16 else None,
|
| 105 |
+
)
|
| 106 |
+
self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
|
| 107 |
+
|
| 108 |
+
# Fetch all the paths.
|
| 109 |
+
if self.fp16:
|
| 110 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
|
| 111 |
+
elif self.use_safetensors:
|
| 112 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
|
| 113 |
+
|
| 114 |
+
# Prepare for the PR.
|
| 115 |
+
commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
|
| 116 |
+
operations = []
|
| 117 |
+
for path in modified_paths:
|
| 118 |
+
operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
|
| 119 |
+
|
| 120 |
+
# Open the PR.
|
| 121 |
+
commit_description = (
|
| 122 |
+
"Variables converted by the [`diffusers`' `fp16_safetensors`"
|
| 123 |
+
" CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
|
| 124 |
+
)
|
| 125 |
+
hub_pr_url = create_commit(
|
| 126 |
+
repo_id=self.ckpt_id,
|
| 127 |
+
operations=operations,
|
| 128 |
+
commit_message=commit_message,
|
| 129 |
+
commit_description=commit_description,
|
| 130 |
+
repo_type="model",
|
| 131 |
+
create_pr=True,
|
| 132 |
+
).pr_url
|
| 133 |
+
self.logger.info(f"PR created here: {hub_pr_url}.")
|
diffusers/configuration_utils.py
ADDED
|
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" ConfigMixin base class and utilities."""
|
| 17 |
+
import dataclasses
|
| 18 |
+
import functools
|
| 19 |
+
import importlib
|
| 20 |
+
import inspect
|
| 21 |
+
import json
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
from collections import OrderedDict
|
| 25 |
+
from pathlib import PosixPath
|
| 26 |
+
from typing import Any, Dict, Tuple, Union
|
| 27 |
+
|
| 28 |
+
import numpy as np
|
| 29 |
+
from huggingface_hub import create_repo, hf_hub_download
|
| 30 |
+
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
| 31 |
+
from requests import HTTPError
|
| 32 |
+
|
| 33 |
+
from . import __version__
|
| 34 |
+
from .utils import (
|
| 35 |
+
DIFFUSERS_CACHE,
|
| 36 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
| 37 |
+
DummyObject,
|
| 38 |
+
deprecate,
|
| 39 |
+
extract_commit_hash,
|
| 40 |
+
http_user_agent,
|
| 41 |
+
logging,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class FrozenDict(OrderedDict):
|
| 51 |
+
def __init__(self, *args, **kwargs):
|
| 52 |
+
super().__init__(*args, **kwargs)
|
| 53 |
+
|
| 54 |
+
for key, value in self.items():
|
| 55 |
+
setattr(self, key, value)
|
| 56 |
+
|
| 57 |
+
self.__frozen = True
|
| 58 |
+
|
| 59 |
+
def __delitem__(self, *args, **kwargs):
|
| 60 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
| 61 |
+
|
| 62 |
+
def setdefault(self, *args, **kwargs):
|
| 63 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
| 64 |
+
|
| 65 |
+
def pop(self, *args, **kwargs):
|
| 66 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
| 67 |
+
|
| 68 |
+
def update(self, *args, **kwargs):
|
| 69 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
| 70 |
+
|
| 71 |
+
def __setattr__(self, name, value):
|
| 72 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
| 73 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
| 74 |
+
super().__setattr__(name, value)
|
| 75 |
+
|
| 76 |
+
def __setitem__(self, name, value):
|
| 77 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
| 78 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
| 79 |
+
super().__setitem__(name, value)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class ConfigMixin:
|
| 83 |
+
r"""
|
| 84 |
+
Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
|
| 85 |
+
provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
|
| 86 |
+
saving classes that inherit from [`ConfigMixin`].
|
| 87 |
+
|
| 88 |
+
Class attributes:
|
| 89 |
+
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
| 90 |
+
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
| 91 |
+
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
| 92 |
+
overridden by subclass).
|
| 93 |
+
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
|
| 94 |
+
- **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
|
| 95 |
+
should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
|
| 96 |
+
subclass).
|
| 97 |
+
"""
|
| 98 |
+
config_name = None
|
| 99 |
+
ignore_for_config = []
|
| 100 |
+
has_compatibles = False
|
| 101 |
+
|
| 102 |
+
_deprecated_kwargs = []
|
| 103 |
+
|
| 104 |
+
def register_to_config(self, **kwargs):
|
| 105 |
+
if self.config_name is None:
|
| 106 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
| 107 |
+
# Special case for `kwargs` used in deprecation warning added to schedulers
|
| 108 |
+
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
| 109 |
+
# or solve in a more general way.
|
| 110 |
+
kwargs.pop("kwargs", None)
|
| 111 |
+
|
| 112 |
+
if not hasattr(self, "_internal_dict"):
|
| 113 |
+
internal_dict = kwargs
|
| 114 |
+
else:
|
| 115 |
+
previous_dict = dict(self._internal_dict)
|
| 116 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
| 117 |
+
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
|
| 118 |
+
|
| 119 |
+
self._internal_dict = FrozenDict(internal_dict)
|
| 120 |
+
|
| 121 |
+
def __getattr__(self, name: str) -> Any:
|
| 122 |
+
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing
|
| 123 |
+
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129
|
| 124 |
+
|
| 125 |
+
Tihs funtion is mostly copied from PyTorch's __getattr__ overwrite:
|
| 126 |
+
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
|
| 130 |
+
is_attribute = name in self.__dict__
|
| 131 |
+
|
| 132 |
+
if is_in_config and not is_attribute:
|
| 133 |
+
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
|
| 134 |
+
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
|
| 135 |
+
return self._internal_dict[name]
|
| 136 |
+
|
| 137 |
+
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
|
| 138 |
+
|
| 139 |
+
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
| 140 |
+
"""
|
| 141 |
+
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
|
| 142 |
+
[`~ConfigMixin.from_config`] class method.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
save_directory (`str` or `os.PathLike`):
|
| 146 |
+
Directory where the configuration JSON file is saved (will be created if it does not exist).
|
| 147 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
| 148 |
+
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
|
| 149 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
| 150 |
+
namespace).
|
| 151 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
| 152 |
+
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
| 153 |
+
"""
|
| 154 |
+
if os.path.isfile(save_directory):
|
| 155 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
| 156 |
+
|
| 157 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 158 |
+
|
| 159 |
+
# If we save using the predefined names, we can load using `from_config`
|
| 160 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
| 161 |
+
|
| 162 |
+
self.to_json_file(output_config_file)
|
| 163 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
| 164 |
+
|
| 165 |
+
if push_to_hub:
|
| 166 |
+
commit_message = kwargs.pop("commit_message", None)
|
| 167 |
+
private = kwargs.pop("private", False)
|
| 168 |
+
create_pr = kwargs.pop("create_pr", False)
|
| 169 |
+
token = kwargs.pop("token", None)
|
| 170 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
| 171 |
+
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
|
| 172 |
+
|
| 173 |
+
self._upload_folder(
|
| 174 |
+
save_directory,
|
| 175 |
+
repo_id,
|
| 176 |
+
token=token,
|
| 177 |
+
commit_message=commit_message,
|
| 178 |
+
create_pr=create_pr,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
@classmethod
|
| 182 |
+
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
|
| 183 |
+
r"""
|
| 184 |
+
Instantiate a Python class from a config dictionary.
|
| 185 |
+
|
| 186 |
+
Parameters:
|
| 187 |
+
config (`Dict[str, Any]`):
|
| 188 |
+
A config dictionary from which the Python class is instantiated. Make sure to only load configuration
|
| 189 |
+
files of compatible classes.
|
| 190 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
| 191 |
+
Whether kwargs that are not consumed by the Python class should be returned or not.
|
| 192 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
| 193 |
+
Can be used to update the configuration object (after it is loaded) and initiate the Python class.
|
| 194 |
+
`**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
|
| 195 |
+
overwrite the same named arguments in `config`.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
[`ModelMixin`] or [`SchedulerMixin`]:
|
| 199 |
+
A model or scheduler object instantiated from a config dictionary.
|
| 200 |
+
|
| 201 |
+
Examples:
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
|
| 205 |
+
|
| 206 |
+
>>> # Download scheduler from huggingface.co and cache.
|
| 207 |
+
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
|
| 208 |
+
|
| 209 |
+
>>> # Instantiate DDIM scheduler class with same config as DDPM
|
| 210 |
+
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
|
| 211 |
+
|
| 212 |
+
>>> # Instantiate PNDM scheduler class with same config as DDPM
|
| 213 |
+
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
|
| 214 |
+
```
|
| 215 |
+
"""
|
| 216 |
+
# <===== TO BE REMOVED WITH DEPRECATION
|
| 217 |
+
# TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
|
| 218 |
+
if "pretrained_model_name_or_path" in kwargs:
|
| 219 |
+
config = kwargs.pop("pretrained_model_name_or_path")
|
| 220 |
+
|
| 221 |
+
if config is None:
|
| 222 |
+
raise ValueError("Please make sure to provide a config as the first positional argument.")
|
| 223 |
+
# ======>
|
| 224 |
+
|
| 225 |
+
if not isinstance(config, dict):
|
| 226 |
+
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
|
| 227 |
+
if "Scheduler" in cls.__name__:
|
| 228 |
+
deprecation_message += (
|
| 229 |
+
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
|
| 230 |
+
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
|
| 231 |
+
" be removed in v1.0.0."
|
| 232 |
+
)
|
| 233 |
+
elif "Model" in cls.__name__:
|
| 234 |
+
deprecation_message += (
|
| 235 |
+
f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
|
| 236 |
+
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
|
| 237 |
+
" instead. This functionality will be removed in v1.0.0."
|
| 238 |
+
)
|
| 239 |
+
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
|
| 240 |
+
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
|
| 241 |
+
|
| 242 |
+
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
|
| 243 |
+
|
| 244 |
+
# Allow dtype to be specified on initialization
|
| 245 |
+
if "dtype" in unused_kwargs:
|
| 246 |
+
init_dict["dtype"] = unused_kwargs.pop("dtype")
|
| 247 |
+
|
| 248 |
+
# add possible deprecated kwargs
|
| 249 |
+
for deprecated_kwarg in cls._deprecated_kwargs:
|
| 250 |
+
if deprecated_kwarg in unused_kwargs:
|
| 251 |
+
init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
|
| 252 |
+
|
| 253 |
+
# Return model and optionally state and/or unused_kwargs
|
| 254 |
+
model = cls(**init_dict)
|
| 255 |
+
|
| 256 |
+
# make sure to also save config parameters that might be used for compatible classes
|
| 257 |
+
model.register_to_config(**hidden_dict)
|
| 258 |
+
|
| 259 |
+
# add hidden kwargs of compatible classes to unused_kwargs
|
| 260 |
+
unused_kwargs = {**unused_kwargs, **hidden_dict}
|
| 261 |
+
|
| 262 |
+
if return_unused_kwargs:
|
| 263 |
+
return (model, unused_kwargs)
|
| 264 |
+
else:
|
| 265 |
+
return model
|
| 266 |
+
|
| 267 |
+
@classmethod
|
| 268 |
+
def get_config_dict(cls, *args, **kwargs):
|
| 269 |
+
deprecation_message = (
|
| 270 |
+
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
|
| 271 |
+
" removed in version v1.0.0"
|
| 272 |
+
)
|
| 273 |
+
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
|
| 274 |
+
return cls.load_config(*args, **kwargs)
|
| 275 |
+
|
| 276 |
+
@classmethod
|
| 277 |
+
def load_config(
|
| 278 |
+
cls,
|
| 279 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
| 280 |
+
return_unused_kwargs=False,
|
| 281 |
+
return_commit_hash=False,
|
| 282 |
+
**kwargs,
|
| 283 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
| 284 |
+
r"""
|
| 285 |
+
Load a model or scheduler configuration.
|
| 286 |
+
|
| 287 |
+
Parameters:
|
| 288 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
| 289 |
+
Can be either:
|
| 290 |
+
|
| 291 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
| 292 |
+
the Hub.
|
| 293 |
+
- A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
|
| 294 |
+
[`~ConfigMixin.save_config`].
|
| 295 |
+
|
| 296 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
| 297 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
| 298 |
+
is not used.
|
| 299 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
| 300 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
| 301 |
+
cached versions if they exist.
|
| 302 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
| 303 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
| 304 |
+
incompletely downloaded files are deleted.
|
| 305 |
+
proxies (`Dict[str, str]`, *optional*):
|
| 306 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
| 307 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
| 308 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
| 309 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
| 310 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
| 311 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
| 312 |
+
won't be downloaded from the Hub.
|
| 313 |
+
use_auth_token (`str` or *bool*, *optional*):
|
| 314 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
| 315 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
| 316 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
| 317 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
| 318 |
+
allowed by Git.
|
| 319 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
| 320 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
| 321 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False):
|
| 322 |
+
Whether unused keyword arguments of the config are returned.
|
| 323 |
+
return_commit_hash (`bool`, *optional*, defaults to `False):
|
| 324 |
+
Whether the `commit_hash` of the loaded configuration are returned.
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
`dict`:
|
| 328 |
+
A dictionary of all the parameters stored in a JSON configuration file.
|
| 329 |
+
|
| 330 |
+
"""
|
| 331 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
| 332 |
+
force_download = kwargs.pop("force_download", False)
|
| 333 |
+
resume_download = kwargs.pop("resume_download", False)
|
| 334 |
+
proxies = kwargs.pop("proxies", None)
|
| 335 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
| 336 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
| 337 |
+
revision = kwargs.pop("revision", None)
|
| 338 |
+
_ = kwargs.pop("mirror", None)
|
| 339 |
+
subfolder = kwargs.pop("subfolder", None)
|
| 340 |
+
user_agent = kwargs.pop("user_agent", {})
|
| 341 |
+
|
| 342 |
+
user_agent = {**user_agent, "file_type": "config"}
|
| 343 |
+
user_agent = http_user_agent(user_agent)
|
| 344 |
+
|
| 345 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
| 346 |
+
|
| 347 |
+
if cls.config_name is None:
|
| 348 |
+
raise ValueError(
|
| 349 |
+
"`self.config_name` is not defined. Note that one should not load a config from "
|
| 350 |
+
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
| 354 |
+
config_file = pretrained_model_name_or_path
|
| 355 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
| 356 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
|
| 357 |
+
# Load from a PyTorch checkpoint
|
| 358 |
+
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
|
| 359 |
+
elif subfolder is not None and os.path.isfile(
|
| 360 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
| 361 |
+
):
|
| 362 |
+
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
| 363 |
+
else:
|
| 364 |
+
raise EnvironmentError(
|
| 365 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
| 366 |
+
)
|
| 367 |
+
else:
|
| 368 |
+
try:
|
| 369 |
+
# Load from URL or cache if already cached
|
| 370 |
+
config_file = hf_hub_download(
|
| 371 |
+
pretrained_model_name_or_path,
|
| 372 |
+
filename=cls.config_name,
|
| 373 |
+
cache_dir=cache_dir,
|
| 374 |
+
force_download=force_download,
|
| 375 |
+
proxies=proxies,
|
| 376 |
+
resume_download=resume_download,
|
| 377 |
+
local_files_only=local_files_only,
|
| 378 |
+
use_auth_token=use_auth_token,
|
| 379 |
+
user_agent=user_agent,
|
| 380 |
+
subfolder=subfolder,
|
| 381 |
+
revision=revision,
|
| 382 |
+
)
|
| 383 |
+
except RepositoryNotFoundError:
|
| 384 |
+
raise EnvironmentError(
|
| 385 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
| 386 |
+
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
| 387 |
+
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
|
| 388 |
+
" login`."
|
| 389 |
+
)
|
| 390 |
+
except RevisionNotFoundError:
|
| 391 |
+
raise EnvironmentError(
|
| 392 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
|
| 393 |
+
" this model name. Check the model page at"
|
| 394 |
+
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
| 395 |
+
)
|
| 396 |
+
except EntryNotFoundError:
|
| 397 |
+
raise EnvironmentError(
|
| 398 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
|
| 399 |
+
)
|
| 400 |
+
except HTTPError as err:
|
| 401 |
+
raise EnvironmentError(
|
| 402 |
+
"There was a specific connection error when trying to load"
|
| 403 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
| 404 |
+
)
|
| 405 |
+
except ValueError:
|
| 406 |
+
raise EnvironmentError(
|
| 407 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
| 408 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
| 409 |
+
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
|
| 410 |
+
" run the library in offline mode at"
|
| 411 |
+
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
| 412 |
+
)
|
| 413 |
+
except EnvironmentError:
|
| 414 |
+
raise EnvironmentError(
|
| 415 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
| 416 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
| 417 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
| 418 |
+
f"containing a {cls.config_name} file"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
try:
|
| 422 |
+
# Load config dict
|
| 423 |
+
config_dict = cls._dict_from_json_file(config_file)
|
| 424 |
+
|
| 425 |
+
commit_hash = extract_commit_hash(config_file)
|
| 426 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
| 427 |
+
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
|
| 428 |
+
|
| 429 |
+
if not (return_unused_kwargs or return_commit_hash):
|
| 430 |
+
return config_dict
|
| 431 |
+
|
| 432 |
+
outputs = (config_dict,)
|
| 433 |
+
|
| 434 |
+
if return_unused_kwargs:
|
| 435 |
+
outputs += (kwargs,)
|
| 436 |
+
|
| 437 |
+
if return_commit_hash:
|
| 438 |
+
outputs += (commit_hash,)
|
| 439 |
+
|
| 440 |
+
return outputs
|
| 441 |
+
|
| 442 |
+
@staticmethod
|
| 443 |
+
def _get_init_keys(cls):
|
| 444 |
+
return set(dict(inspect.signature(cls.__init__).parameters).keys())
|
| 445 |
+
|
| 446 |
+
@classmethod
|
| 447 |
+
def extract_init_dict(cls, config_dict, **kwargs):
|
| 448 |
+
# Skip keys that were not present in the original config, so default __init__ values were used
|
| 449 |
+
used_defaults = config_dict.get("_use_default_values", [])
|
| 450 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
|
| 451 |
+
|
| 452 |
+
# 0. Copy origin config dict
|
| 453 |
+
original_dict = dict(config_dict.items())
|
| 454 |
+
|
| 455 |
+
# 1. Retrieve expected config attributes from __init__ signature
|
| 456 |
+
expected_keys = cls._get_init_keys(cls)
|
| 457 |
+
expected_keys.remove("self")
|
| 458 |
+
# remove general kwargs if present in dict
|
| 459 |
+
if "kwargs" in expected_keys:
|
| 460 |
+
expected_keys.remove("kwargs")
|
| 461 |
+
# remove flax internal keys
|
| 462 |
+
if hasattr(cls, "_flax_internal_args"):
|
| 463 |
+
for arg in cls._flax_internal_args:
|
| 464 |
+
expected_keys.remove(arg)
|
| 465 |
+
|
| 466 |
+
# 2. Remove attributes that cannot be expected from expected config attributes
|
| 467 |
+
# remove keys to be ignored
|
| 468 |
+
if len(cls.ignore_for_config) > 0:
|
| 469 |
+
expected_keys = expected_keys - set(cls.ignore_for_config)
|
| 470 |
+
|
| 471 |
+
# load diffusers library to import compatible and original scheduler
|
| 472 |
+
diffusers_library = importlib.import_module(__name__.split(".")[0])
|
| 473 |
+
|
| 474 |
+
if cls.has_compatibles:
|
| 475 |
+
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
|
| 476 |
+
else:
|
| 477 |
+
compatible_classes = []
|
| 478 |
+
|
| 479 |
+
expected_keys_comp_cls = set()
|
| 480 |
+
for c in compatible_classes:
|
| 481 |
+
expected_keys_c = cls._get_init_keys(c)
|
| 482 |
+
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
|
| 483 |
+
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
|
| 484 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
|
| 485 |
+
|
| 486 |
+
# remove attributes from orig class that cannot be expected
|
| 487 |
+
orig_cls_name = config_dict.pop("_class_name", cls.__name__)
|
| 488 |
+
if (
|
| 489 |
+
isinstance(orig_cls_name, str)
|
| 490 |
+
and orig_cls_name != cls.__name__
|
| 491 |
+
and hasattr(diffusers_library, orig_cls_name)
|
| 492 |
+
):
|
| 493 |
+
orig_cls = getattr(diffusers_library, orig_cls_name)
|
| 494 |
+
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
|
| 495 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
|
| 496 |
+
elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
|
| 497 |
+
raise ValueError(
|
| 498 |
+
"Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
# remove private attributes
|
| 502 |
+
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
|
| 503 |
+
|
| 504 |
+
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
|
| 505 |
+
init_dict = {}
|
| 506 |
+
for key in expected_keys:
|
| 507 |
+
# if config param is passed to kwarg and is present in config dict
|
| 508 |
+
# it should overwrite existing config dict key
|
| 509 |
+
if key in kwargs and key in config_dict:
|
| 510 |
+
config_dict[key] = kwargs.pop(key)
|
| 511 |
+
|
| 512 |
+
if key in kwargs:
|
| 513 |
+
# overwrite key
|
| 514 |
+
init_dict[key] = kwargs.pop(key)
|
| 515 |
+
elif key in config_dict:
|
| 516 |
+
# use value from config dict
|
| 517 |
+
init_dict[key] = config_dict.pop(key)
|
| 518 |
+
|
| 519 |
+
# 4. Give nice warning if unexpected values have been passed
|
| 520 |
+
if len(config_dict) > 0:
|
| 521 |
+
logger.warning(
|
| 522 |
+
f"The config attributes {config_dict} were passed to {cls.__name__}, "
|
| 523 |
+
"but are not expected and will be ignored. Please verify your "
|
| 524 |
+
f"{cls.config_name} configuration file."
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
# 5. Give nice info if config attributes are initiliazed to default because they have not been passed
|
| 528 |
+
passed_keys = set(init_dict.keys())
|
| 529 |
+
if len(expected_keys - passed_keys) > 0:
|
| 530 |
+
logger.info(
|
| 531 |
+
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
# 6. Define unused keyword arguments
|
| 535 |
+
unused_kwargs = {**config_dict, **kwargs}
|
| 536 |
+
|
| 537 |
+
# 7. Define "hidden" config parameters that were saved for compatible classes
|
| 538 |
+
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
|
| 539 |
+
|
| 540 |
+
return init_dict, unused_kwargs, hidden_config_dict
|
| 541 |
+
|
| 542 |
+
@classmethod
|
| 543 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
| 544 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
| 545 |
+
text = reader.read()
|
| 546 |
+
return json.loads(text)
|
| 547 |
+
|
| 548 |
+
def __repr__(self):
|
| 549 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
| 550 |
+
|
| 551 |
+
@property
|
| 552 |
+
def config(self) -> Dict[str, Any]:
|
| 553 |
+
"""
|
| 554 |
+
Returns the config of the class as a frozen dictionary
|
| 555 |
+
|
| 556 |
+
Returns:
|
| 557 |
+
`Dict[str, Any]`: Config of the class.
|
| 558 |
+
"""
|
| 559 |
+
return self._internal_dict
|
| 560 |
+
|
| 561 |
+
def to_json_string(self) -> str:
|
| 562 |
+
"""
|
| 563 |
+
Serializes the configuration instance to a JSON string.
|
| 564 |
+
|
| 565 |
+
Returns:
|
| 566 |
+
`str`:
|
| 567 |
+
String containing all the attributes that make up the configuration instance in JSON format.
|
| 568 |
+
"""
|
| 569 |
+
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
|
| 570 |
+
config_dict["_class_name"] = self.__class__.__name__
|
| 571 |
+
config_dict["_diffusers_version"] = __version__
|
| 572 |
+
|
| 573 |
+
def to_json_saveable(value):
|
| 574 |
+
if isinstance(value, np.ndarray):
|
| 575 |
+
value = value.tolist()
|
| 576 |
+
elif isinstance(value, PosixPath):
|
| 577 |
+
value = str(value)
|
| 578 |
+
return value
|
| 579 |
+
|
| 580 |
+
config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
|
| 581 |
+
# Don't save "_ignore_files" or "_use_default_values"
|
| 582 |
+
config_dict.pop("_ignore_files", None)
|
| 583 |
+
config_dict.pop("_use_default_values", None)
|
| 584 |
+
|
| 585 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
| 586 |
+
|
| 587 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
| 588 |
+
"""
|
| 589 |
+
Save the configuration instance's parameters to a JSON file.
|
| 590 |
+
|
| 591 |
+
Args:
|
| 592 |
+
json_file_path (`str` or `os.PathLike`):
|
| 593 |
+
Path to the JSON file to save a configuration instance's parameters.
|
| 594 |
+
"""
|
| 595 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
| 596 |
+
writer.write(self.to_json_string())
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
def register_to_config(init):
|
| 600 |
+
r"""
|
| 601 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
| 602 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
| 603 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
| 604 |
+
|
| 605 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
| 606 |
+
"""
|
| 607 |
+
|
| 608 |
+
@functools.wraps(init)
|
| 609 |
+
def inner_init(self, *args, **kwargs):
|
| 610 |
+
# Ignore private kwargs in the init.
|
| 611 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
| 612 |
+
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
|
| 613 |
+
if not isinstance(self, ConfigMixin):
|
| 614 |
+
raise RuntimeError(
|
| 615 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
| 616 |
+
"not inherit from `ConfigMixin`."
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
ignore = getattr(self, "ignore_for_config", [])
|
| 620 |
+
# Get positional arguments aligned with kwargs
|
| 621 |
+
new_kwargs = {}
|
| 622 |
+
signature = inspect.signature(init)
|
| 623 |
+
parameters = {
|
| 624 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
| 625 |
+
}
|
| 626 |
+
for arg, name in zip(args, parameters.keys()):
|
| 627 |
+
new_kwargs[name] = arg
|
| 628 |
+
|
| 629 |
+
# Then add all kwargs
|
| 630 |
+
new_kwargs.update(
|
| 631 |
+
{
|
| 632 |
+
k: init_kwargs.get(k, default)
|
| 633 |
+
for k, default in parameters.items()
|
| 634 |
+
if k not in ignore and k not in new_kwargs
|
| 635 |
+
}
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
# Take note of the parameters that were not present in the loaded config
|
| 639 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
| 640 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
| 641 |
+
|
| 642 |
+
new_kwargs = {**config_init_kwargs, **new_kwargs}
|
| 643 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
| 644 |
+
init(self, *args, **init_kwargs)
|
| 645 |
+
|
| 646 |
+
return inner_init
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
def flax_register_to_config(cls):
|
| 650 |
+
original_init = cls.__init__
|
| 651 |
+
|
| 652 |
+
@functools.wraps(original_init)
|
| 653 |
+
def init(self, *args, **kwargs):
|
| 654 |
+
if not isinstance(self, ConfigMixin):
|
| 655 |
+
raise RuntimeError(
|
| 656 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
| 657 |
+
"not inherit from `ConfigMixin`."
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
# Ignore private kwargs in the init. Retrieve all passed attributes
|
| 661 |
+
init_kwargs = dict(kwargs.items())
|
| 662 |
+
|
| 663 |
+
# Retrieve default values
|
| 664 |
+
fields = dataclasses.fields(self)
|
| 665 |
+
default_kwargs = {}
|
| 666 |
+
for field in fields:
|
| 667 |
+
# ignore flax specific attributes
|
| 668 |
+
if field.name in self._flax_internal_args:
|
| 669 |
+
continue
|
| 670 |
+
if type(field.default) == dataclasses._MISSING_TYPE:
|
| 671 |
+
default_kwargs[field.name] = None
|
| 672 |
+
else:
|
| 673 |
+
default_kwargs[field.name] = getattr(self, field.name)
|
| 674 |
+
|
| 675 |
+
# Make sure init_kwargs override default kwargs
|
| 676 |
+
new_kwargs = {**default_kwargs, **init_kwargs}
|
| 677 |
+
# dtype should be part of `init_kwargs`, but not `new_kwargs`
|
| 678 |
+
if "dtype" in new_kwargs:
|
| 679 |
+
new_kwargs.pop("dtype")
|
| 680 |
+
|
| 681 |
+
# Get positional arguments aligned with kwargs
|
| 682 |
+
for i, arg in enumerate(args):
|
| 683 |
+
name = fields[i].name
|
| 684 |
+
new_kwargs[name] = arg
|
| 685 |
+
|
| 686 |
+
# Take note of the parameters that were not present in the loaded config
|
| 687 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
| 688 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
| 689 |
+
|
| 690 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
| 691 |
+
original_init(self, *args, **kwargs)
|
| 692 |
+
|
| 693 |
+
cls.__init__ = init
|
| 694 |
+
return cls
|
diffusers/dependency_versions_check.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import sys
|
| 15 |
+
|
| 16 |
+
from .dependency_versions_table import deps
|
| 17 |
+
from .utils.versions import require_version, require_version_core
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# define which module versions we always want to check at run time
|
| 21 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
| 22 |
+
#
|
| 23 |
+
# order specific notes:
|
| 24 |
+
# - tqdm must be checked before tokenizers
|
| 25 |
+
|
| 26 |
+
pkgs_to_check_at_runtime = "python requests filelock numpy".split()
|
| 27 |
+
for pkg in pkgs_to_check_at_runtime:
|
| 28 |
+
if pkg in deps:
|
| 29 |
+
require_version_core(deps[pkg])
|
| 30 |
+
else:
|
| 31 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def dep_version_check(pkg, hint=None):
|
| 35 |
+
require_version(deps[pkg], hint)
|
diffusers/dependency_versions_table.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
| 2 |
+
# 1. modify the `_deps` dict in setup.py
|
| 3 |
+
# 2. run `make deps_table_update``
|
| 4 |
+
deps = {
|
| 5 |
+
"Pillow": "Pillow",
|
| 6 |
+
"accelerate": "accelerate>=0.11.0",
|
| 7 |
+
"compel": "compel==0.1.8",
|
| 8 |
+
"black": "black~=23.1",
|
| 9 |
+
"datasets": "datasets",
|
| 10 |
+
"filelock": "filelock",
|
| 11 |
+
"flax": "flax>=0.4.1",
|
| 12 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
| 13 |
+
"huggingface-hub": "huggingface-hub>=0.13.2",
|
| 14 |
+
"requests-mock": "requests-mock==1.10.0",
|
| 15 |
+
"importlib_metadata": "importlib_metadata",
|
| 16 |
+
"invisible-watermark": "invisible-watermark>=0.2.0",
|
| 17 |
+
"isort": "isort>=5.5.4",
|
| 18 |
+
"jax": "jax>=0.4.1",
|
| 19 |
+
"jaxlib": "jaxlib>=0.4.1",
|
| 20 |
+
"Jinja2": "Jinja2",
|
| 21 |
+
"k-diffusion": "k-diffusion>=0.0.12",
|
| 22 |
+
"torchsde": "torchsde",
|
| 23 |
+
"note_seq": "note_seq",
|
| 24 |
+
"librosa": "librosa",
|
| 25 |
+
"numpy": "numpy",
|
| 26 |
+
"omegaconf": "omegaconf",
|
| 27 |
+
"parameterized": "parameterized",
|
| 28 |
+
"peft": "peft<=0.6.2",
|
| 29 |
+
"protobuf": "protobuf>=3.20.3,<4",
|
| 30 |
+
"pytest": "pytest",
|
| 31 |
+
"pytest-timeout": "pytest-timeout",
|
| 32 |
+
"pytest-xdist": "pytest-xdist",
|
| 33 |
+
"python": "python>=3.8.0",
|
| 34 |
+
"ruff": "ruff==0.0.280",
|
| 35 |
+
"safetensors": "safetensors>=0.3.1",
|
| 36 |
+
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
|
| 37 |
+
"scipy": "scipy",
|
| 38 |
+
"onnx": "onnx",
|
| 39 |
+
"regex": "regex!=2019.12.17",
|
| 40 |
+
"requests": "requests",
|
| 41 |
+
"tensorboard": "tensorboard",
|
| 42 |
+
"torch": "torch>=1.4",
|
| 43 |
+
"torchvision": "torchvision",
|
| 44 |
+
"transformers": "transformers>=4.25.1",
|
| 45 |
+
"urllib3": "urllib3<=2.0.0",
|
| 46 |
+
}
|
diffusers/experimental/README.md
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🧨 Diffusers Experimental
|
| 2 |
+
|
| 3 |
+
We are adding experimental code to support novel applications and usages of the Diffusers library.
|
| 4 |
+
Currently, the following experiments are supported:
|
| 5 |
+
* Reinforcement learning via an implementation of the [Diffuser](https://arxiv.org/abs/2205.09991) model.
|
diffusers/experimental/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .rl import ValueGuidedRLPipeline
|
diffusers/experimental/rl/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .value_guided_sampling import ValueGuidedRLPipeline
|
diffusers/experimental/rl/value_guided_sampling.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
import torch
|
| 17 |
+
import tqdm
|
| 18 |
+
|
| 19 |
+
from ...models.unet_1d import UNet1DModel
|
| 20 |
+
from ...pipelines import DiffusionPipeline
|
| 21 |
+
from ...utils.dummy_pt_objects import DDPMScheduler
|
| 22 |
+
from ...utils.torch_utils import randn_tensor
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class ValueGuidedRLPipeline(DiffusionPipeline):
|
| 26 |
+
r"""
|
| 27 |
+
Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states.
|
| 28 |
+
|
| 29 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 30 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 31 |
+
|
| 32 |
+
Parameters:
|
| 33 |
+
value_function ([`UNet1DModel`]):
|
| 34 |
+
A specialized UNet for fine-tuning trajectories base on reward.
|
| 35 |
+
unet ([`UNet1DModel`]):
|
| 36 |
+
UNet architecture to denoise the encoded trajectories.
|
| 37 |
+
scheduler ([`SchedulerMixin`]):
|
| 38 |
+
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
|
| 39 |
+
application is [`DDPMScheduler`].
|
| 40 |
+
env ():
|
| 41 |
+
An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
value_function: UNet1DModel,
|
| 47 |
+
unet: UNet1DModel,
|
| 48 |
+
scheduler: DDPMScheduler,
|
| 49 |
+
env,
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.value_function = value_function
|
| 53 |
+
self.unet = unet
|
| 54 |
+
self.scheduler = scheduler
|
| 55 |
+
self.env = env
|
| 56 |
+
self.data = env.get_dataset()
|
| 57 |
+
self.means = {}
|
| 58 |
+
for key in self.data.keys():
|
| 59 |
+
try:
|
| 60 |
+
self.means[key] = self.data[key].mean()
|
| 61 |
+
except: # noqa: E722
|
| 62 |
+
pass
|
| 63 |
+
self.stds = {}
|
| 64 |
+
for key in self.data.keys():
|
| 65 |
+
try:
|
| 66 |
+
self.stds[key] = self.data[key].std()
|
| 67 |
+
except: # noqa: E722
|
| 68 |
+
pass
|
| 69 |
+
self.state_dim = env.observation_space.shape[0]
|
| 70 |
+
self.action_dim = env.action_space.shape[0]
|
| 71 |
+
|
| 72 |
+
def normalize(self, x_in, key):
|
| 73 |
+
return (x_in - self.means[key]) / self.stds[key]
|
| 74 |
+
|
| 75 |
+
def de_normalize(self, x_in, key):
|
| 76 |
+
return x_in * self.stds[key] + self.means[key]
|
| 77 |
+
|
| 78 |
+
def to_torch(self, x_in):
|
| 79 |
+
if isinstance(x_in, dict):
|
| 80 |
+
return {k: self.to_torch(v) for k, v in x_in.items()}
|
| 81 |
+
elif torch.is_tensor(x_in):
|
| 82 |
+
return x_in.to(self.unet.device)
|
| 83 |
+
return torch.tensor(x_in, device=self.unet.device)
|
| 84 |
+
|
| 85 |
+
def reset_x0(self, x_in, cond, act_dim):
|
| 86 |
+
for key, val in cond.items():
|
| 87 |
+
x_in[:, key, act_dim:] = val.clone()
|
| 88 |
+
return x_in
|
| 89 |
+
|
| 90 |
+
def run_diffusion(self, x, conditions, n_guide_steps, scale):
|
| 91 |
+
batch_size = x.shape[0]
|
| 92 |
+
y = None
|
| 93 |
+
for i in tqdm.tqdm(self.scheduler.timesteps):
|
| 94 |
+
# create batch of timesteps to pass into model
|
| 95 |
+
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
|
| 96 |
+
for _ in range(n_guide_steps):
|
| 97 |
+
with torch.enable_grad():
|
| 98 |
+
x.requires_grad_()
|
| 99 |
+
|
| 100 |
+
# permute to match dimension for pre-trained models
|
| 101 |
+
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
|
| 102 |
+
grad = torch.autograd.grad([y.sum()], [x])[0]
|
| 103 |
+
|
| 104 |
+
posterior_variance = self.scheduler._get_variance(i)
|
| 105 |
+
model_std = torch.exp(0.5 * posterior_variance)
|
| 106 |
+
grad = model_std * grad
|
| 107 |
+
|
| 108 |
+
grad[timesteps < 2] = 0
|
| 109 |
+
x = x.detach()
|
| 110 |
+
x = x + scale * grad
|
| 111 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
| 112 |
+
|
| 113 |
+
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
|
| 114 |
+
|
| 115 |
+
# TODO: verify deprecation of this kwarg
|
| 116 |
+
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
|
| 117 |
+
|
| 118 |
+
# apply conditions to the trajectory (set the initial state)
|
| 119 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
| 120 |
+
x = self.to_torch(x)
|
| 121 |
+
return x, y
|
| 122 |
+
|
| 123 |
+
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
|
| 124 |
+
# normalize the observations and create batch dimension
|
| 125 |
+
obs = self.normalize(obs, "observations")
|
| 126 |
+
obs = obs[None].repeat(batch_size, axis=0)
|
| 127 |
+
|
| 128 |
+
conditions = {0: self.to_torch(obs)}
|
| 129 |
+
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
|
| 130 |
+
|
| 131 |
+
# generate initial noise and apply our conditions (to make the trajectories start at current state)
|
| 132 |
+
x1 = randn_tensor(shape, device=self.unet.device)
|
| 133 |
+
x = self.reset_x0(x1, conditions, self.action_dim)
|
| 134 |
+
x = self.to_torch(x)
|
| 135 |
+
|
| 136 |
+
# run the diffusion process
|
| 137 |
+
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
|
| 138 |
+
|
| 139 |
+
# sort output trajectories by value
|
| 140 |
+
sorted_idx = y.argsort(0, descending=True).squeeze()
|
| 141 |
+
sorted_values = x[sorted_idx]
|
| 142 |
+
actions = sorted_values[:, :, : self.action_dim]
|
| 143 |
+
actions = actions.detach().cpu().numpy()
|
| 144 |
+
denorm_actions = self.de_normalize(actions, key="actions")
|
| 145 |
+
|
| 146 |
+
# select the action with the highest value
|
| 147 |
+
if y is not None:
|
| 148 |
+
selected_index = 0
|
| 149 |
+
else:
|
| 150 |
+
# if we didn't run value guiding, select a random action
|
| 151 |
+
selected_index = np.random.randint(0, batch_size)
|
| 152 |
+
|
| 153 |
+
denorm_actions = denorm_actions[selected_index, 0]
|
| 154 |
+
return denorm_actions
|
diffusers/image_processor.py
ADDED
|
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import warnings
|
| 16 |
+
from typing import List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import PIL.Image
|
| 20 |
+
import torch
|
| 21 |
+
from PIL import Image
|
| 22 |
+
|
| 23 |
+
from .configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
PipelineImageInput = Union[
|
| 28 |
+
PIL.Image.Image,
|
| 29 |
+
np.ndarray,
|
| 30 |
+
torch.FloatTensor,
|
| 31 |
+
List[PIL.Image.Image],
|
| 32 |
+
List[np.ndarray],
|
| 33 |
+
List[torch.FloatTensor],
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class VaeImageProcessor(ConfigMixin):
|
| 38 |
+
"""
|
| 39 |
+
Image processor for VAE.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 43 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
| 44 |
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
| 45 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
| 46 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
| 47 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
| 48 |
+
Resampling filter to use when resizing the image.
|
| 49 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 50 |
+
Whether to normalize the image to [-1,1].
|
| 51 |
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
| 52 |
+
Whether to binarize the image to 0/1.
|
| 53 |
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
| 54 |
+
Whether to convert the images to RGB format.
|
| 55 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
| 56 |
+
Whether to convert the images to grayscale format.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
config_name = CONFIG_NAME
|
| 60 |
+
|
| 61 |
+
@register_to_config
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
do_resize: bool = True,
|
| 65 |
+
vae_scale_factor: int = 8,
|
| 66 |
+
resample: str = "lanczos",
|
| 67 |
+
do_normalize: bool = True,
|
| 68 |
+
do_binarize: bool = False,
|
| 69 |
+
do_convert_rgb: bool = False,
|
| 70 |
+
do_convert_grayscale: bool = False,
|
| 71 |
+
):
|
| 72 |
+
super().__init__()
|
| 73 |
+
if do_convert_rgb and do_convert_grayscale:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
|
| 76 |
+
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
| 77 |
+
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
| 78 |
+
)
|
| 79 |
+
self.config.do_convert_rgb = False
|
| 80 |
+
|
| 81 |
+
@staticmethod
|
| 82 |
+
def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:
|
| 83 |
+
"""
|
| 84 |
+
Convert a numpy image or a batch of images to a PIL image.
|
| 85 |
+
"""
|
| 86 |
+
if images.ndim == 3:
|
| 87 |
+
images = images[None, ...]
|
| 88 |
+
images = (images * 255).round().astype("uint8")
|
| 89 |
+
if images.shape[-1] == 1:
|
| 90 |
+
# special case for grayscale (single channel) images
|
| 91 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
| 92 |
+
else:
|
| 93 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 94 |
+
|
| 95 |
+
return pil_images
|
| 96 |
+
|
| 97 |
+
@staticmethod
|
| 98 |
+
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
| 99 |
+
"""
|
| 100 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
| 101 |
+
"""
|
| 102 |
+
if not isinstance(images, list):
|
| 103 |
+
images = [images]
|
| 104 |
+
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
|
| 105 |
+
images = np.stack(images, axis=0)
|
| 106 |
+
|
| 107 |
+
return images
|
| 108 |
+
|
| 109 |
+
@staticmethod
|
| 110 |
+
def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
|
| 111 |
+
"""
|
| 112 |
+
Convert a NumPy image to a PyTorch tensor.
|
| 113 |
+
"""
|
| 114 |
+
if images.ndim == 3:
|
| 115 |
+
images = images[..., None]
|
| 116 |
+
|
| 117 |
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
| 118 |
+
return images
|
| 119 |
+
|
| 120 |
+
@staticmethod
|
| 121 |
+
def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
|
| 122 |
+
"""
|
| 123 |
+
Convert a PyTorch tensor to a NumPy image.
|
| 124 |
+
"""
|
| 125 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 126 |
+
return images
|
| 127 |
+
|
| 128 |
+
@staticmethod
|
| 129 |
+
def normalize(images):
|
| 130 |
+
"""
|
| 131 |
+
Normalize an image array to [-1,1].
|
| 132 |
+
"""
|
| 133 |
+
return 2.0 * images - 1.0
|
| 134 |
+
|
| 135 |
+
@staticmethod
|
| 136 |
+
def denormalize(images):
|
| 137 |
+
"""
|
| 138 |
+
Denormalize an image array to [0,1].
|
| 139 |
+
"""
|
| 140 |
+
return (images / 2 + 0.5).clamp(0, 1)
|
| 141 |
+
|
| 142 |
+
@staticmethod
|
| 143 |
+
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
| 144 |
+
"""
|
| 145 |
+
Converts a PIL image to RGB format.
|
| 146 |
+
"""
|
| 147 |
+
image = image.convert("RGB")
|
| 148 |
+
|
| 149 |
+
return image
|
| 150 |
+
|
| 151 |
+
@staticmethod
|
| 152 |
+
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
| 153 |
+
"""
|
| 154 |
+
Converts a PIL image to grayscale format.
|
| 155 |
+
"""
|
| 156 |
+
image = image.convert("L")
|
| 157 |
+
|
| 158 |
+
return image
|
| 159 |
+
|
| 160 |
+
def get_default_height_width(
|
| 161 |
+
self,
|
| 162 |
+
image: [PIL.Image.Image, np.ndarray, torch.Tensor],
|
| 163 |
+
height: Optional[int] = None,
|
| 164 |
+
width: Optional[int] = None,
|
| 165 |
+
):
|
| 166 |
+
"""
|
| 167 |
+
This function return the height and width that are downscaled to the next integer multiple of
|
| 168 |
+
`vae_scale_factor`.
|
| 169 |
+
|
| 170 |
+
Args:
|
| 171 |
+
image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
| 172 |
+
The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
|
| 173 |
+
shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
|
| 174 |
+
have shape `[batch, channel, height, width]`.
|
| 175 |
+
height (`int`, *optional*, defaults to `None`):
|
| 176 |
+
The height in preprocessed image. If `None`, will use the height of `image` input.
|
| 177 |
+
width (`int`, *optional*`, defaults to `None`):
|
| 178 |
+
The width in preprocessed. If `None`, will use the width of the `image` input.
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
if height is None:
|
| 182 |
+
if isinstance(image, PIL.Image.Image):
|
| 183 |
+
height = image.height
|
| 184 |
+
elif isinstance(image, torch.Tensor):
|
| 185 |
+
height = image.shape[2]
|
| 186 |
+
else:
|
| 187 |
+
height = image.shape[1]
|
| 188 |
+
|
| 189 |
+
if width is None:
|
| 190 |
+
if isinstance(image, PIL.Image.Image):
|
| 191 |
+
width = image.width
|
| 192 |
+
elif isinstance(image, torch.Tensor):
|
| 193 |
+
width = image.shape[3]
|
| 194 |
+
else:
|
| 195 |
+
width = image.shape[2]
|
| 196 |
+
|
| 197 |
+
width, height = (
|
| 198 |
+
x - x % self.config.vae_scale_factor for x in (width, height)
|
| 199 |
+
) # resize to integer multiple of vae_scale_factor
|
| 200 |
+
|
| 201 |
+
return height, width
|
| 202 |
+
|
| 203 |
+
def resize(
|
| 204 |
+
self,
|
| 205 |
+
image: [PIL.Image.Image, np.ndarray, torch.Tensor],
|
| 206 |
+
height: Optional[int] = None,
|
| 207 |
+
width: Optional[int] = None,
|
| 208 |
+
) -> [PIL.Image.Image, np.ndarray, torch.Tensor]:
|
| 209 |
+
"""
|
| 210 |
+
Resize image.
|
| 211 |
+
"""
|
| 212 |
+
if isinstance(image, PIL.Image.Image):
|
| 213 |
+
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
|
| 214 |
+
elif isinstance(image, torch.Tensor):
|
| 215 |
+
image = torch.nn.functional.interpolate(
|
| 216 |
+
image,
|
| 217 |
+
size=(height, width),
|
| 218 |
+
)
|
| 219 |
+
elif isinstance(image, np.ndarray):
|
| 220 |
+
image = self.numpy_to_pt(image)
|
| 221 |
+
image = torch.nn.functional.interpolate(
|
| 222 |
+
image,
|
| 223 |
+
size=(height, width),
|
| 224 |
+
)
|
| 225 |
+
image = self.pt_to_numpy(image)
|
| 226 |
+
return image
|
| 227 |
+
|
| 228 |
+
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
| 229 |
+
"""
|
| 230 |
+
create a face_hair_mask
|
| 231 |
+
"""
|
| 232 |
+
image[image < 0.5] = 0
|
| 233 |
+
image[image >= 0.5] = 1
|
| 234 |
+
return image
|
| 235 |
+
|
| 236 |
+
def preprocess(
|
| 237 |
+
self,
|
| 238 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
|
| 239 |
+
height: Optional[int] = None,
|
| 240 |
+
width: Optional[int] = None,
|
| 241 |
+
) -> torch.Tensor:
|
| 242 |
+
"""
|
| 243 |
+
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
|
| 244 |
+
"""
|
| 245 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
| 246 |
+
|
| 247 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
| 248 |
+
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
|
| 249 |
+
if isinstance(image, torch.Tensor):
|
| 250 |
+
# if image is a pytorch tensor could have 2 possible shapes:
|
| 251 |
+
# 1. batch x height x width: we should insert the channel dimension at position 1
|
| 252 |
+
# 2. channnel x height x width: we should insert batch dimension at position 0,
|
| 253 |
+
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
|
| 254 |
+
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
|
| 255 |
+
image = image.unsqueeze(1)
|
| 256 |
+
else:
|
| 257 |
+
# if it is a numpy array, it could have 2 possible shapes:
|
| 258 |
+
# 1. batch x height x width: insert channel dimension on last position
|
| 259 |
+
# 2. height x width x channel: insert batch dimension on first position
|
| 260 |
+
if image.shape[-1] == 1:
|
| 261 |
+
image = np.expand_dims(image, axis=0)
|
| 262 |
+
else:
|
| 263 |
+
image = np.expand_dims(image, axis=-1)
|
| 264 |
+
|
| 265 |
+
if isinstance(image, supported_formats):
|
| 266 |
+
image = [image]
|
| 267 |
+
elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
|
| 268 |
+
raise ValueError(
|
| 269 |
+
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
if isinstance(image[0], PIL.Image.Image):
|
| 273 |
+
if self.config.do_convert_rgb:
|
| 274 |
+
image = [self.convert_to_rgb(i) for i in image]
|
| 275 |
+
elif self.config.do_convert_grayscale:
|
| 276 |
+
image = [self.convert_to_grayscale(i) for i in image]
|
| 277 |
+
if self.config.do_resize:
|
| 278 |
+
height, width = self.get_default_height_width(image[0], height, width)
|
| 279 |
+
image = [self.resize(i, height, width) for i in image]
|
| 280 |
+
image = self.pil_to_numpy(image) # to np
|
| 281 |
+
image = self.numpy_to_pt(image) # to pt
|
| 282 |
+
|
| 283 |
+
elif isinstance(image[0], np.ndarray):
|
| 284 |
+
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
|
| 285 |
+
|
| 286 |
+
image = self.numpy_to_pt(image)
|
| 287 |
+
|
| 288 |
+
height, width = self.get_default_height_width(image, height, width)
|
| 289 |
+
if self.config.do_resize:
|
| 290 |
+
image = self.resize(image, height, width)
|
| 291 |
+
|
| 292 |
+
elif isinstance(image[0], torch.Tensor):
|
| 293 |
+
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
|
| 294 |
+
|
| 295 |
+
if self.config.do_convert_grayscale and image.ndim == 3:
|
| 296 |
+
image = image.unsqueeze(1)
|
| 297 |
+
|
| 298 |
+
channel = image.shape[1]
|
| 299 |
+
# don't need any preprocess if the image is latents
|
| 300 |
+
if channel == 4:
|
| 301 |
+
return image
|
| 302 |
+
|
| 303 |
+
height, width = self.get_default_height_width(image, height, width)
|
| 304 |
+
if self.config.do_resize:
|
| 305 |
+
image = self.resize(image, height, width)
|
| 306 |
+
|
| 307 |
+
# expected range [0,1], normalize to [-1,1]
|
| 308 |
+
do_normalize = self.config.do_normalize
|
| 309 |
+
if image.min() < 0 and do_normalize:
|
| 310 |
+
warnings.warn(
|
| 311 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
| 312 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
| 313 |
+
FutureWarning,
|
| 314 |
+
)
|
| 315 |
+
do_normalize = False
|
| 316 |
+
|
| 317 |
+
if do_normalize:
|
| 318 |
+
image = self.normalize(image)
|
| 319 |
+
|
| 320 |
+
if self.config.do_binarize:
|
| 321 |
+
image = self.binarize(image)
|
| 322 |
+
|
| 323 |
+
return image
|
| 324 |
+
|
| 325 |
+
def postprocess(
|
| 326 |
+
self,
|
| 327 |
+
image: torch.FloatTensor,
|
| 328 |
+
output_type: str = "pil",
|
| 329 |
+
do_denormalize: Optional[List[bool]] = None,
|
| 330 |
+
):
|
| 331 |
+
if not isinstance(image, torch.Tensor):
|
| 332 |
+
raise ValueError(
|
| 333 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
| 334 |
+
)
|
| 335 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
| 336 |
+
deprecation_message = (
|
| 337 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
| 338 |
+
"`pil`, `np`, `pt`, `latent`"
|
| 339 |
+
)
|
| 340 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
| 341 |
+
output_type = "np"
|
| 342 |
+
|
| 343 |
+
if output_type == "latent":
|
| 344 |
+
return image
|
| 345 |
+
|
| 346 |
+
if do_denormalize is None:
|
| 347 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
| 348 |
+
|
| 349 |
+
image = torch.stack(
|
| 350 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
if output_type == "pt":
|
| 354 |
+
return image
|
| 355 |
+
|
| 356 |
+
image = self.pt_to_numpy(image)
|
| 357 |
+
|
| 358 |
+
if output_type == "np":
|
| 359 |
+
return image
|
| 360 |
+
|
| 361 |
+
if output_type == "pil":
|
| 362 |
+
return self.numpy_to_pil(image)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
class VaeImageProcessorLDM3D(VaeImageProcessor):
|
| 366 |
+
"""
|
| 367 |
+
Image processor for VAE LDM3D.
|
| 368 |
+
|
| 369 |
+
Args:
|
| 370 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 371 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
| 372 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
| 373 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
| 374 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
| 375 |
+
Resampling filter to use when resizing the image.
|
| 376 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 377 |
+
Whether to normalize the image to [-1,1].
|
| 378 |
+
"""
|
| 379 |
+
|
| 380 |
+
config_name = CONFIG_NAME
|
| 381 |
+
|
| 382 |
+
@register_to_config
|
| 383 |
+
def __init__(
|
| 384 |
+
self,
|
| 385 |
+
do_resize: bool = True,
|
| 386 |
+
vae_scale_factor: int = 8,
|
| 387 |
+
resample: str = "lanczos",
|
| 388 |
+
do_normalize: bool = True,
|
| 389 |
+
):
|
| 390 |
+
super().__init__()
|
| 391 |
+
|
| 392 |
+
@staticmethod
|
| 393 |
+
def numpy_to_pil(images):
|
| 394 |
+
"""
|
| 395 |
+
Convert a NumPy image or a batch of images to a PIL image.
|
| 396 |
+
"""
|
| 397 |
+
if images.ndim == 3:
|
| 398 |
+
images = images[None, ...]
|
| 399 |
+
images = (images * 255).round().astype("uint8")
|
| 400 |
+
if images.shape[-1] == 1:
|
| 401 |
+
# special case for grayscale (single channel) images
|
| 402 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
| 403 |
+
else:
|
| 404 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
|
| 405 |
+
|
| 406 |
+
return pil_images
|
| 407 |
+
|
| 408 |
+
@staticmethod
|
| 409 |
+
def rgblike_to_depthmap(image):
|
| 410 |
+
"""
|
| 411 |
+
Args:
|
| 412 |
+
image: RGB-like depth image
|
| 413 |
+
|
| 414 |
+
Returns: depth map
|
| 415 |
+
|
| 416 |
+
"""
|
| 417 |
+
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
| 418 |
+
|
| 419 |
+
def numpy_to_depth(self, images):
|
| 420 |
+
"""
|
| 421 |
+
Convert a NumPy depth image or a batch of images to a PIL image.
|
| 422 |
+
"""
|
| 423 |
+
if images.ndim == 3:
|
| 424 |
+
images = images[None, ...]
|
| 425 |
+
images_depth = images[:, :, :, 3:]
|
| 426 |
+
if images.shape[-1] == 6:
|
| 427 |
+
images_depth = (images_depth * 255).round().astype("uint8")
|
| 428 |
+
pil_images = [
|
| 429 |
+
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
|
| 430 |
+
]
|
| 431 |
+
elif images.shape[-1] == 4:
|
| 432 |
+
images_depth = (images_depth * 65535.0).astype(np.uint16)
|
| 433 |
+
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
|
| 434 |
+
else:
|
| 435 |
+
raise Exception("Not supported")
|
| 436 |
+
|
| 437 |
+
return pil_images
|
| 438 |
+
|
| 439 |
+
def postprocess(
|
| 440 |
+
self,
|
| 441 |
+
image: torch.FloatTensor,
|
| 442 |
+
output_type: str = "pil",
|
| 443 |
+
do_denormalize: Optional[List[bool]] = None,
|
| 444 |
+
):
|
| 445 |
+
if not isinstance(image, torch.Tensor):
|
| 446 |
+
raise ValueError(
|
| 447 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
| 448 |
+
)
|
| 449 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
| 450 |
+
deprecation_message = (
|
| 451 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
| 452 |
+
"`pil`, `np`, `pt`, `latent`"
|
| 453 |
+
)
|
| 454 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
| 455 |
+
output_type = "np"
|
| 456 |
+
|
| 457 |
+
if do_denormalize is None:
|
| 458 |
+
do_denormalize = [self.config.do_normalize] * image.shape[0]
|
| 459 |
+
|
| 460 |
+
image = torch.stack(
|
| 461 |
+
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
image = self.pt_to_numpy(image)
|
| 465 |
+
|
| 466 |
+
if output_type == "np":
|
| 467 |
+
if image.shape[-1] == 6:
|
| 468 |
+
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
|
| 469 |
+
else:
|
| 470 |
+
image_depth = image[:, :, :, 3:]
|
| 471 |
+
return image[:, :, :, :3], image_depth
|
| 472 |
+
|
| 473 |
+
if output_type == "pil":
|
| 474 |
+
return self.numpy_to_pil(image), self.numpy_to_depth(image)
|
| 475 |
+
else:
|
| 476 |
+
raise Exception(f"This type {output_type} is not supported")
|
diffusers/loaders.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
diffusers/models/README.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Models
|
| 2 |
+
|
| 3 |
+
For more detail on the models, please refer to the [docs](https://huggingface.co/docs/diffusers/api/models/overview).
|
diffusers/models/__init__.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import TYPE_CHECKING
|
| 16 |
+
|
| 17 |
+
from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, is_flax_available, is_torch_available
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
_import_structure = {}
|
| 21 |
+
|
| 22 |
+
if is_torch_available():
|
| 23 |
+
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
|
| 24 |
+
_import_structure["autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
| 25 |
+
_import_structure["autoencoder_kl"] = ["AutoencoderKL"]
|
| 26 |
+
_import_structure["autoencoder_tiny"] = ["AutoencoderTiny"]
|
| 27 |
+
_import_structure["consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
| 28 |
+
_import_structure["controlnet"] = ["ControlNetModel"]
|
| 29 |
+
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
|
| 30 |
+
_import_structure["modeling_utils"] = ["ModelMixin"]
|
| 31 |
+
_import_structure["prior_transformer"] = ["PriorTransformer"]
|
| 32 |
+
_import_structure["t5_film_transformer"] = ["T5FilmDecoder"]
|
| 33 |
+
_import_structure["transformer_2d"] = ["Transformer2DModel"]
|
| 34 |
+
_import_structure["transformer_temporal"] = ["TransformerTemporalModel"]
|
| 35 |
+
_import_structure["unet_1d"] = ["UNet1DModel"]
|
| 36 |
+
_import_structure["unet_2d"] = ["UNet2DModel"]
|
| 37 |
+
_import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
|
| 38 |
+
_import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
|
| 39 |
+
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
| 40 |
+
_import_structure["vq_model"] = ["VQModel"]
|
| 41 |
+
|
| 42 |
+
if is_flax_available():
|
| 43 |
+
_import_structure["controlnet_flax"] = ["FlaxControlNetModel"]
|
| 44 |
+
_import_structure["unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
|
| 45 |
+
_import_structure["vae_flax"] = ["FlaxAutoencoderKL"]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
| 49 |
+
if is_torch_available():
|
| 50 |
+
from .adapter import MultiAdapter, T2IAdapter
|
| 51 |
+
from .autoencoder_asym_kl import AsymmetricAutoencoderKL
|
| 52 |
+
from .autoencoder_kl import AutoencoderKL
|
| 53 |
+
from .autoencoder_tiny import AutoencoderTiny
|
| 54 |
+
from .consistency_decoder_vae import ConsistencyDecoderVAE
|
| 55 |
+
from .controlnet import ControlNetModel
|
| 56 |
+
from .dual_transformer_2d import DualTransformer2DModel
|
| 57 |
+
from .modeling_utils import ModelMixin
|
| 58 |
+
from .prior_transformer import PriorTransformer
|
| 59 |
+
from .t5_film_transformer import T5FilmDecoder
|
| 60 |
+
from .transformer_2d import Transformer2DModel
|
| 61 |
+
from .transformer_temporal import TransformerTemporalModel
|
| 62 |
+
from .unet_1d import UNet1DModel
|
| 63 |
+
from .unet_2d import UNet2DModel
|
| 64 |
+
from .unet_2d_condition import UNet2DConditionModel
|
| 65 |
+
from .unet_3d_condition import UNet3DConditionModel
|
| 66 |
+
from .unet_motion_model import MotionAdapter, UNetMotionModel
|
| 67 |
+
from .vq_model import VQModel
|
| 68 |
+
|
| 69 |
+
if is_flax_available():
|
| 70 |
+
from .controlnet_flax import FlaxControlNetModel
|
| 71 |
+
from .unet_2d_condition_flax import FlaxUNet2DConditionModel
|
| 72 |
+
from .vae_flax import FlaxAutoencoderKL
|
| 73 |
+
|
| 74 |
+
else:
|
| 75 |
+
import sys
|
| 76 |
+
|
| 77 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
diffusers/models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (2.24 kB). View file
|
|
|
diffusers/models/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (2.23 kB). View file
|
|
|
diffusers/models/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (2.24 kB). View file
|
|
|
diffusers/models/__pycache__/activations.cpython-310.pyc
ADDED
|
Binary file (4.2 kB). View file
|
|
|
diffusers/models/__pycache__/activations.cpython-38.pyc
ADDED
|
Binary file (4.18 kB). View file
|
|
|
diffusers/models/__pycache__/activations.cpython-39.pyc
ADDED
|
Binary file (4.19 kB). View file
|
|
|
diffusers/models/__pycache__/attention.cpython-310.pyc
ADDED
|
Binary file (11.3 kB). View file
|
|
|
diffusers/models/__pycache__/attention.cpython-38.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
diffusers/models/__pycache__/attention.cpython-39.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
diffusers/models/__pycache__/attention_processor.cpython-310.pyc
ADDED
|
Binary file (48.6 kB). View file
|
|
|
diffusers/models/__pycache__/attention_processor.cpython-38.pyc
ADDED
|
Binary file (48.8 kB). View file
|
|
|
diffusers/models/__pycache__/attention_processor.cpython-39.pyc
ADDED
|
Binary file (48.8 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_asym_kl.cpython-310.pyc
ADDED
|
Binary file (6.49 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_asym_kl.cpython-38.pyc
ADDED
|
Binary file (6.39 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_asym_kl.cpython-39.pyc
ADDED
|
Binary file (6.4 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc
ADDED
|
Binary file (17.4 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_kl.cpython-38.pyc
ADDED
|
Binary file (17.4 kB). View file
|
|
|
diffusers/models/__pycache__/autoencoder_kl.cpython-39.pyc
ADDED
|
Binary file (17.4 kB). View file
|
|
|
diffusers/models/__pycache__/controlnet.cpython-310.pyc
ADDED
|
Binary file (27.3 kB). View file
|
|
|
diffusers/models/__pycache__/controlnet.cpython-38.pyc
ADDED
|
Binary file (26.8 kB). View file
|
|
|
diffusers/models/__pycache__/controlnet.cpython-39.pyc
ADDED
|
Binary file (26.8 kB). View file
|
|
|
diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc
ADDED
|
Binary file (6.08 kB). View file
|
|
|
diffusers/models/__pycache__/dual_transformer_2d.cpython-38.pyc
ADDED
|
Binary file (5.95 kB). View file
|
|
|
diffusers/models/__pycache__/dual_transformer_2d.cpython-39.pyc
ADDED
|
Binary file (5.96 kB). View file
|
|
|
diffusers/models/__pycache__/embeddings.cpython-310.pyc
ADDED
|
Binary file (23.9 kB). View file
|
|
|
diffusers/models/__pycache__/embeddings.cpython-38.pyc
ADDED
|
Binary file (23.7 kB). View file
|
|
|
diffusers/models/__pycache__/embeddings.cpython-39.pyc
ADDED
|
Binary file (23.7 kB). View file
|
|
|
diffusers/models/__pycache__/lora.cpython-310.pyc
ADDED
|
Binary file (9.27 kB). View file
|
|
|